Round-Based Public Transit Routing

Un algoritmo di ottimizzazione per il trasporto multimodale

Gianluca Covini

Universita di Pavia

January 9, 2026

1/32

Indice

@ Introduzione

© Problema

© Soluzioni esistenti
@ RAPTOR

© Miglioramenti

@ Estensioni

@ Risultati e conclusioni

2/32

Introduzione
°

Introduzione

Il problema presentato e quello del miglior percorso nelle reti di
trasporto pubblico, andando a considerare in particolare due
criteri di ottimizzazione: tempo di arrivo e numero di trasferimenti.

L'obiettivo della presentazione & formalizzare il problema,
introdurre gli algoritmi esistenti, spesso varianti dell'algoritmo di
Dijkstra e di presentare RAPTOR, Round-bAsed Public Transit
Optimized Router, un algoritmo piu efficiente delle soluzioni
esistenti e non basato sull'algoritmo di Dijkstra.

3/32

Problema
©000000

| dati del problema sono riassunti nel vettore
(n’ S? T7 R’ ‘F)

@ [1, periodo operativo (come secondi di una giornata);
@ S, insieme di fermate;

@ T, insieme di viaggi;

@ R, insieme di itinerari;

@ F, insieme di tracciati pedonali.

Il vettore prende il nome di timetable.

4/32

Problema
0®00000

@ Un viaggio t € T & una sequenza di fermate di uno specifico
veicolo lungo una linea;

@ Un itinerario r € R € un insieme di viaggi che condivide la
stessa sequenza di fermate;

@ Un tracciato pedonale f € F & un percorso a piedi tra due
fermate p; e p, cui associo un tempo di percorrenza /(p1, p2).
.

5/32

Problema
0®00000

@ Un viaggio t € T & una sequenza di fermate di uno specifico
veicolo lungo una linea;

@ Un itinerario r € R € un insieme di viaggi che condivide la
stessa sequenza di fermate;

@ Un tracciato pedonale f € F & un percorso a piedi tra due
fermate p; e p, cui associo un tempo di percorrenza /(p1, p2).

Tempo di arrivo e di partenza

Dato un viaggio t € T, formato da p € S fermate associo un
tempo di arrivo 7,,(t, p) € un tempo di ripartenza T4ep(t, p).
Ovviamente varra che:

7—arr(t'y P) < 7—dep(ta P)

5/32

Problema
00@0000

Obiettivo

L'obiettivo & produrre un insieme di percorsi J.

6/32

Problema
00@0000

Obiettivo

L'obiettivo & produrre un insieme di percorsi J.

Percorso

Un percorso j € J & una sequenza di viaggi t € T e tracciati

f € F che va da una fermata iniziale ps a una fermata finale p;.
Notiamo che un percorso che ha k viaggi avra esattamente k — 1
trasferimenti.

A un percorso sono associati dei criteri di ottimizzazione.

6/32

Problema
00@0000

Obiettivo

L'obiettivo & produrre un insieme di percorsi J.

Percorso

Un percorso j € J & una sequenza di viaggi t € T e tracciati

f € F che va da una fermata iniziale ps a una fermata finale p;.
Notiamo che un percorso che ha k viaggi avra esattamente k — 1
trasferimenti.

A un percorso sono associati dei criteri di ottimizzazione.

A

Dominanza
Dati due percorsi j; e jp in J. Diciamo che j; domina j (j1 < j2)
se j1 non & peggiore di jo in nessun criterio.

6/32

Problema
000®000

Obiettivo

Fronte di Pareto

Un fronte di Pareto & un insieme di percorsi a due a due non
dominati.

7/32

Problema
000®000

Obiettivo

Fronte di Pareto

Un fronte di Pareto & un insieme di percorsi a due a due non
dominati.

Definiamo etichetta(label) un viaggio intermedio.

7/32

Problema
0000e00

Problemi

Possiamo considerare vari problemi, tra cui:

o Earliest Arrival Problem: date ps, pr e 7 € I, cerca un
percorso j € J che parta da ps non prima di 7 e arrivi in p; il
prima possibile.

8/32

Problema
0000e00

Problemi

Possiamo considerare vari problemi, tra cui:

o Earliest Arrival Problem: date ps, pr e 7 € I, cerca un
percorso j € J che parta da ps non prima di 7 e arrivi in p; il
prima possibile.

@ Multi-Criteria Problem: & una generalizzazione che ottimizza
anche altri criteri e cerca un fronte di Pareto.

8/32

Problema
0000e00

Problemi

Possiamo considerare vari problemi, tra cui:

o Earliest Arrival Problem: date ps, pr e 7 € I, cerca un
percorso j € J che parta da ps non prima di 7 e arrivi in p; il
prima possibile.

@ Multi-Criteria Problem: & una generalizzazione che ottimizza
anche altri criteri e cerca un fronte di Pareto.

@ Range Problem: date ps, p: e 7 € [, cerca un percorso j € J
che parta da ps non piu tardi di 7 e arrivi in p; il prima
possibile.

8/32

Problema
000000

Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:

@ Creiamo un nodo-fermata per ogni fermata p € S. Inoltre a
ogni fermata p e itinerario r € R passante per essa associamo
un nodo-itinerario rp.

9/32

Problema
000000

Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:

@ Creiamo un nodo-fermata per ogni fermata p € S. Inoltre a
ogni fermata p e itinerario r € R passante per essa associamo
un nodo-itinerario rp.

e All'interno di ogni fermata aggiungiamo degli archi (non
orientati) tra il nodo-fermata e i nodi-itinerario corrispondenti,
per permettere i trasferimenti. Il loro peso (costante) & dato
dal tempo di trasferimento tra i viaggi che toccano p.

9/32

Problema
000000e

Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:
@ Modellizziamo i viaggi come archi dipendenti dal tempo tra
due nodi-itinerari: se un viaggio t € T porta da p; a p» lungo
r, allora lo modellizziamo come un arco tra rp, e rp,. Il loro
peso sara funzione del tempo di viaggio
7—arr(ta P2) - 7—dep(ta pl)-

10/32

Problema
000000e

Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:

@ Modellizziamo i viaggi come archi dipendenti dal tempo tra
due nodi-itinerari: se un viaggio t € T porta da p; a p» lungo
r, allora lo modellizziamo come un arco tra rp, e rp,. Il loro
peso sara funzione del tempo di viaggio
7—arr(ta P2) - 7—dep(ta pl)-

@ | trasferimenti pedonali li modellizziamo come archi tra i
nodi-fermata corrispondenti con peso /(p1, p2).

10/32

Soluzioni esistenti
®000

Algoritmi

Vista I'analogia con i network flow problems, possiamo costruire
degli algoritmi risolutivi simili.

In particolare I'Earliest Arrival Problem si puo risolvere con una
variante dell’algoritmo di Dijkstra, che prende il nome di
Time-Dijkstra (TD).

Time-Dijkstra

L’algoritmo definisce una struttura di nodi finiti FA€. L'algoritmo
rimuove uno alla volta i nodi da FN° per tempo di arrivo
crescente, valutando ogni arco e = (u, v) al tempo d'arrivo in u e
aggiornando di volta in volta I'etichetta. L'algoritmo si ferma
quando viene analizzato il nodo d'arrivo p;.

11/32

Soluzioni esistenti
o000

Algoritmi

Il Multi-Criteria Problem si pu0 risolvere con un algoritmo
label-correcting che prende il nome di
multi-label-correcting-algorithm (MLC).

Ogni etichetta possiede vari criteri di ottimizzazione. Ogni nodo u,
ora, contiene un insieme B, ("bag") che contiene delle etichette
non dominate. Procede, poi, come un algoritmo /abel-correcting.
A ogni passo, prende I'etichetta minima L, e processa il nodo w.
Dopodiché per ogni arco (u, v) crea una etichetta L,: se non &
dominata da nessuna etichetta in B, la inserisce in B, .

12/32

Soluzioni esistenti
coeo

Algoritmi

Quando oltre al tempo d’arrivo I'unico altro criterio di
ottimizzazione & il numero di trasferimenti, si usa una variante
dell’algoritmo Time-Dijkstra, che prende il nome di Layered
Dijkstra (LD).

Layered Dijkstra

Sia K un limite superiore al numero di trasferimenti. Si
costruiscono K copie del grafo con gli archi relativi ai trasferimenti
che vanno da un grafo al successivo. Si applica, poi, I'algoritmo
TD. Un percorso che termina sul k-esimo grafo avra esattamente k
trasferimenti.

13/32

Soluzioni esistenti
ocooe

Algoritmi

Per il Range Problem, infine, si puo usare I'algoritmo Self-Pruning
Connection-Setting (SPCS).

Agisce come TD ma con la differenza che vengono eliminate tutte
le etichette L di un vertice v se questo possiede gia un’altra
etichetta L’ per cui 7(L") > 7(L).

14/32

RAPTOR
©0000000

RAPTOR

RAPTOR ¢ un algoritmo che risolve i problemi per due criteri di
ottimizzazione: il tempo di arrivo e il numero di trasferimenti.

15/32

RAPTOR
©0000000

RAPTOR

RAPTOR ¢ un algoritmo che risolve i problemi per due criteri di
ottimizzazione: il tempo di arrivo e il numero di trasferimenti.

e Dati: prendiamo una timetable (I1,S,7,R,F), una fermata
di partenza e una fermata di arrivo ps e p; € S e un tempo di
partenza 7 € [1.

@ Obiettivo: per ogni k vogliamo trovare un percorso non
dominato con tempo di arrivo minimo in p;, avente al
massimo k viaggi.

15/32

RAPTOR
0®000000

Algoritmo

L'algoritmo & iterativo: al passo k si calcola il modo piu veloce per
arrivare all’arrivo con al pit k — 1 trasferimenti (cioe al piu k

viaggi).
@ Poniamo K un limite superiore del numero di iterazioni.

@ L’algoritmo associa a ogni fermata un vettore
(t0(p), ..., 7k(p)), dove 7;(p) rappresenta il tempo d'arrivo
minore in p con al pil / viaggi.

16 /32

RAPTOR
[e]eX Yololelele]

Algoritmo

Prima dell'inizio dell'iterazione inizializziamo i valori nel seguente
modo:

Condizioni iniziali

e Inizializziamo tutti i 7;(p) a oo;

@ poniamo To(ps) = 7.

17/32

RAPTOR
[e]eX Yololelele]

Algoritmo

Prima dell'inizio dell'iterazione inizializziamo i valori nel seguente
modo:

Condizioni iniziali

e Inizializziamo tutti i 7;(p) a oo;

@ poniamo To(ps) = 7.

All'inizio del passo k avremo che 19(p), ..., Tk—1(p) sono corrette
per ogni p € S, mentre le restanti saranno ancora pari a co.
L'obiettivo del passo k & calcolare 74(p) per ogni fermata p.

17/32

RAPTOR
[e1eTeY Tolelele]

Passo k

Il passo k si articola in tre step.

Primo step

@ Per ogni p € S poniamo 7,(p) = 7xk—1(p), in modo da porre
una limitazione superiore per 74 (p).

18/32

RAPTOR
0000®000

Passo k

Il passo k si articola in tre step.

@ Si analizza ogni itinerario r esattamente una volta.
Definiamo 7 (r) = (to, - -, tj7(r)—1), | viaggi lungo I'itinerario
r dal primo all'ultimo.
Sia, inoltre, et(r, p;) il viaggio piu veloce, se esiste, in r tale
per cui Taep(t, pi) > Tr—1(pi).
Per analizzare I'itinerario, lo percorriamo finché non troviamo
una fermata p; per cui et(r, p;) & definita. Nel caso
chiamiamo viaggio corrente il viaggio corrispondente.
Continuiamo il procedimento percorrendo tutte le fermate
dell'itinerario r.
Per ogni fermata per cui & definita possiamo aggiornare 74(p)
usando et(r, p).

19/32

RAPTOR
00000@00

Passo k

Notiamo che al secondo passo possiamo dover aggiornare il viaggio
corrente per k: a ogni fermata p; lungo r & possibile che ci sia un
viaggio pil veloce per p; perché si & trovato al passo precedente un
modo pil veloce per arrivare a p;. Si verifica, quindi, che

Tk—1(pi) < Tarr(t, pi) € si aggiorna il viaggio corrente ricalcolando

et(r, pi).

20/32

RAPTOR
000000e0

Passo k

Il passo k si articola in tre step:

Terzo step

Per ogni tracciato pedonale (pj, pj) € F si pone
7«(pj) = mint(p;), 7 (pi) + 1(pis Pj)

21/32

RAPTOR
000000e0

Passo k

Il passo k si articola in tre step:

Terzo step

Per ogni tracciato pedonale (pj, pj) € F si pone
7«(pj) = mint(p;), Tk(pi) + I(pi, Pj)

Criteri d'arresto

L'algoritmo si ferma dopo il passo k se non & stato aggiornato
nessun valore 7 (p) negli ultimi due step dell’iterazione.

A

21/32

RAPTOR
0000000Oe

Complessita computazionale

Complessita computazionale

L'algoritmo impiega O(K(>_,cx |r| + |T| + |F|)) operazioni per
produrre un fronte di Pareto di percorsi, dove K & il numero di
iterazioni.

Infatti, noi percorriamo ogni itinerario al piti una volta: per
ciascuno di essi osserviamo . |r| fermate. Per trovare et(r,-)
guardiamo ogni viaggio di ogni itinerario al piu una volta. E infine,
nel terzo step, studiamo ogni tracciato pedonale al pili una volta.

22/32

Miglioramenti
©000

Marking

Una prima tecnica di miglioramento prevede di analizzare al passo
k solamente quegli itinerari che contengono almeno una fermata
raggiunta con k — 1 viaggi. Quindi, ha senso considerare solamente
gli itinerari che hanno avuto un aggiornamento al passo k — 1.

Lo si implementa segnando al passo k — 1 le fermate p per cui c'e
stato un miglioramento di 74x_1(p) e analizzando, poi, al passo k
solo quegli itinerari che contengono una di queste fermate

23/32

Miglioramenti
0®00

Local pruning

Per ogni fermata p; fissiamo un valore 7 x (p;) che rappresenta il
pit breve tempo di arrivo a p; noto. Al passo k consideriamo una
fermata solo quando il tempo di arrivo con k viaggi € minore di
7% (pi)-

Notiamo che il local pruning ci permette di evitare il primo step di
ogni iterazione.

24/32

Miglioramenti
feeX Yol

Target pruning

Infine, dato che siamo interessati solo ai viaggi che giungono al
target stop p:, non ha senso segnare tutte le fermate i cui tempi
d’arrivo sono maggiori di 7 * (p;)

25/32

Miglioramenti
oooe

Transfer preferences e dominanza stretta

L'algoritmo MLC pud essere esteso al concetto di dominanza
stretta.

Dominanza stretta

Un viaggio j1 domina strettamente un altro viaggio jo se &
strettamente migliori in almeno un criterio.

La motivazione & quella di introdurre dei criteri di preferenza per le
location in cui avvengono i trasferimenti.

26/32

Miglioramenti
oooe

Transfer preferences e dominanza stretta

L'algoritmo MLC pud essere esteso al concetto di dominanza
stretta.

Dominanza stretta

Un viaggio j1 domina strettamente un altro viaggio jo se &
strettamente migliori in almeno un criterio.

La motivazione & quella di introdurre dei criteri di preferenza per le
location in cui avvengono i trasferimenti.

E possibile introdurre questa cosa in RAPTOR: quando si prende
un nuovo viaggio & sufficiente tenere traccia della fermata
preferibile in cui prendere il viaggio.

26/32

Estensioni
[1}

McRAPTOR

E possibile estendere RAPTOR per gestire ulteriori criteri di
ottimizzazione, introducendo McRAPTOR.

McRAPTOR ¢ in grado di gestire, per esempio, l'introduzione di
tariffe a zona.

27/32

Estensioni
oce

rRAPTOR

Per risolvere il range problem & possibile costruire I'estensione
rRAPTOR.

28/32

Risultati e conclusioni
©000

Risultati

Un'analisi sul trasporto pubblico di Londra rivela che RAPTOR
performa meglio di LD e MLC che risolvono lo stesso problema,
essendo 9 volte piu veloce di MLC e 6 volte piu veloce di LD.
Risulta che RAPTOR & piu veloce, di un fattore 2, anche di TD
che risolve, pero, un problema pit semplice, dal momento che non
ottimizza il numero di trasferimenti.

Relax. # Visits # Comp. Time

Algorithm Tr +# Rnd. p. Route p. Stop p- Stop # Jn. [ms]
RAPTOR = 8.4 3.0 11.1 22.2 1.9 7.3
TD o 74 7.4 0.9 142
LD [7] . 17.3 30.5 1.9 445
MLC [15] . 2.8 28.7 1.9 67.2

29/32

Risultati e conclusioni
0®00

Risultati

Relax. # Visits # Comp. Time
Algorithm R Tr Fz # Rnd. p. Route p. Stop p. Stop # Jn. [ms]
rRAPTOR . . o 138.5 36.6 124.7 346.4 16.3 R7.0
MeRAPTOR o . [9.5 3.8 15.1 2062.7 16.3 2508
MeRAPTOR o . . 10.8 1.5 17.9 396.4 9.0 1074
MLC IL')] o . . 48.1 930.3 9.0 3995
SPCS [11] . o o 76.2 T6.2 T8 1836

1 core 3 cores 6 cores 12 cores

Comp. Time # Comp. Time # Comp. Time # Comp. Time

Algorithm R Tr F=z p. Stop [ms] p. Stop [ms] p. Stop |ms) p. Stop [ms]
RAPTOR o . o 21.5 7.7 21.7 5.0 21.8 4.1 21.8 3.7
rRAPTOR . . =] 346.4 92.3 3567.7 39.5 374.0 26.8 104.6 21.6
MeRAPTOR o . o 2008.6 280.2 2101.2 113.1 2098.4 66.1 2098.2 50.1
McRAPTOR o . . 110.0 118.6 110.6 19.4 108.4 29.9 108.3 26.1
SPCS [11] . o =] 76.2 1R83.6 79.9 69.1 85.2 14.9 95.5 38.9

30/32

Risultati e conclusioni
coeo

Risultati

Los Angeles New York Chicago

Comp. Time # Comp. Time # Comp. Time
Algorithm R Tr p. Stop [ms] p. Stop [ms] p. Stop [ms]
RAPTOR -] . 24.0 3.4 14.6 3.1 14.4 1.8
RAPTOR-6 -] . 25.0 2.0 14.0 2.0 14.6 1.2
rRAPTOR . . 128.0 16.2 159.5 24.3 143.7 14.6
rRAPTOR-6 . 141.8 7.1 173.9 9.0 154.3 5.5
LD [7] o . 37.5 24.9 25.4 21.8 22.6 13.0
MLC [15] o . 21.7 38.1 16.8 32.2 9.8 17.6
SPCS [l'l] . o 284 37.9 29.6 53.7 29.3 36.3
SPCS-6 [ll] . o 330 14.8 34.5 15.0 32.6 5.8

31/32

Risultati e conclusioni
ocooe

Conclusioni e bibliografia

RAPTOR si rivela un algoritmo piu efficiente delle soluzioni
esistenti: a differenza di queste non opera su un grafo e non
utilizza code di priorita.

Bibliografia:

B Delling, Pajor, Wernkeck, Round-Based Public Transit
Routing, 2015.

32/32

	Introduzione
	Problema
	Soluzioni esistenti
	RAPTOR
	Miglioramenti
	Estensioni
	Risultati e conclusioni

