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Introduzione

Il problema presentato è quello del miglior percorso nelle reti di
trasporto pubblico, andando a considerare in particolare due
criteri di ottimizzazione: tempo di arrivo e numero di trasferimenti.

L’obiettivo della presentazione è formalizzare il problema,
introdurre gli algoritmi esistenti, spesso varianti dell’algoritmo di
Dijkstra e di presentare RAPTOR, Round-bAsed Public Transit
Optimized Router, un algoritmo più efficiente delle soluzioni
esistenti e non basato sull’algoritmo di Dijkstra.
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Dati

Timetable

I dati del problema sono riassunti nel vettore

(Π,S, T ,R,F)

Π, periodo operativo (come secondi di una giornata);

S, insieme di fermate;

T , insieme di viaggi;

R, insieme di itinerari;

F , insieme di tracciati pedonali.

Il vettore prende il nome di timetable.
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Dati

Un viaggio t ∈ T è una sequenza di fermate di uno specifico
veicolo lungo una linea;

Un itinerario r ∈ R è un insieme di viaggi che condivide la
stessa sequenza di fermate;

Un tracciato pedonale f ∈ F è un percorso a piedi tra due
fermate p1 e p2, cui associo un tempo di percorrenza l(p1, p2).

Tempo di arrivo e di partenza

Dato un viaggio t ∈ T , formato da p ∈ S fermate associo un
tempo di arrivo τarr (t, p) e un tempo di ripartenza τdep(t, p).
Ovviamente varrà che:

τarr (t, p) ≤ τdep(t, p)
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Obiettivo

L’obiettivo è produrre un insieme di percorsi J .

Percorso

Un percorso j ∈ J è una sequenza di viaggi t ∈ T e tracciati
f ∈ F che va da una fermata iniziale ps a una fermata finale pt .
Notiamo che un percorso che ha k viaggi avrà esattamente k − 1
trasferimenti.
A un percorso sono associati dei criteri di ottimizzazione.

Dominanza

Dati due percorsi j1 e j2 in J . Diciamo che j1 domina j2 (j1 ⪯ j2)
se j1 non è peggiore di j2 in nessun criterio.
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Obiettivo

Fronte di Pareto

Un fronte di Pareto è un insieme di percorsi a due a due non
dominati.

Etichetta

Definiamo etichetta(label) un viaggio intermedio.
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Problemi

Possiamo considerare vari problemi, tra cui:

Earliest Arrival Problem: date ps , pt e τ ∈ Π, cerca un
percorso j ∈ J che parta da ps non prima di τ e arrivi in pt il
prima possibile.

Multi-Criteria Problem: è una generalizzazione che ottimizza
anche altri criteri e cerca un fronte di Pareto.

Range Problem: date ps , pt e τ ∈ Π, cerca un percorso j ∈ J
che parta da ps non più tardi di τ e arrivi in pt il prima
possibile.
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Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:

Creiamo un nodo-fermata per ogni fermata p ∈ S. Inoltre a
ogni fermata p e itinerario r ∈ R passante per essa associamo
un nodo-itinerario rp.

All’interno di ogni fermata aggiungiamo degli archi (non
orientati) tra il nodo-fermata e i nodi-itinerario corrispondenti,
per permettere i trasferimenti. Il loro peso (costante) è dato
dal tempo di trasferimento tra i viaggi che toccano p.
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Struttura di grafo

Problemi di questo tipo vengono formalizzati con strutture a grafi.
Modellizziamo la rete nel seguente modo:

Modellizziamo i viaggi come archi dipendenti dal tempo tra
due nodi-itinerari: se un viaggio t ∈ T porta da p1 a p2 lungo
r , allora lo modellizziamo come un arco tra rp1 e rp2 . Il loro
peso sarà funzione del tempo di viaggio
τarr (t, p2)− τdep(t, p1).

I trasferimenti pedonali li modellizziamo come archi tra i
nodi-fermata corrispondenti con peso l(p1, p2).
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Algoritmi

Vista l’analogia con i network flow problems, possiamo costruire
degli algoritmi risolutivi simili.
In particolare l’Earliest Arrival Problem si può risolvere con una
variante dell’algoritmo di Dijkstra, che prende il nome di
Time-Dijkstra (TD).

Time-Dijkstra

L’algoritmo definisce una struttura di nodi finiti FN c . L’algoritmo
rimuove uno alla volta i nodi da FN c per tempo di arrivo
crescente, valutando ogni arco e = (u, v) al tempo d’arrivo in u e
aggiornando di volta in volta l’etichetta. L’algoritmo si ferma
quando viene analizzato il nodo d’arrivo pt .
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Algoritmi

Il Multi-Criteria Problem si può risolvere con un algoritmo
label-correcting che prende il nome di
multi-label-correcting-algorithm (MLC).

MLC

Ogni etichetta possiede vari criteri di ottimizzazione. Ogni nodo u,
ora, contiene un insieme Bu (”bag”) che contiene delle etichette
non dominate. Procede, poi, come un algoritmo label-correcting.
A ogni passo, prende l’etichetta minima Lu e processa il nodo u.
Dopodiché per ogni arco (u, v) crea una etichetta Lv : se non è
dominata da nessuna etichetta in Bv la inserisce in Bv .
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Algoritmi

Quando oltre al tempo d’arrivo l’unico altro criterio di
ottimizzazione è il numero di trasferimenti, si usa una variante
dell’algoritmo Time-Dijkstra, che prende il nome di Layered
Dijkstra (LD).

Layered Dijkstra

Sia K un limite superiore al numero di trasferimenti. Si
costruiscono K copie del grafo con gli archi relativi ai trasferimenti
che vanno da un grafo al successivo. Si applica, poi, l’algoritmo
TD. Un percorso che termina sul k-esimo grafo avrà esattamente k
trasferimenti.
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Algoritmi

Per il Range Problem, infine, si può usare l’algoritmo Self-Pruning
Connection-Setting (SPCS).

SPCS

Agisce come TD ma con la differenza che vengono eliminate tutte
le etichette L di un vertice v se questo possiede già un’altra
etichetta L′ per cui τ(L′) ≥ τ(L).
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RAPTOR

RAPTOR è un algoritmo che risolve i problemi per due criteri di
ottimizzazione: il tempo di arrivo e il numero di trasferimenti.

Dati: prendiamo una timetable (Π,S, T ,R,F), una fermata
di partenza e una fermata di arrivo ps e pt ∈ S e un tempo di
partenza τ ∈ Π.

Obiettivo: per ogni k vogliamo trovare un percorso non
dominato con tempo di arrivo minimo in pt , avente al
massimo k viaggi.
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Algoritmo

L’algoritmo è iterativo: al passo k si calcola il modo più veloce per
arrivare all’arrivo con al più k − 1 trasferimenti (cioè al più k
viaggi).

Poniamo K un limite superiore del numero di iterazioni.

L’algoritmo associa a ogni fermata un vettore
(τ0(p), . . . , τK (p)), dove τi (p) rappresenta il tempo d’arrivo
minore in p con al più i viaggi.

16 / 32



Introduzione Problema Soluzioni esistenti RAPTOR Miglioramenti Estensioni Risultati e conclusioni

Algoritmo

Prima dell’inizio dell’iterazione inizializziamo i valori nel seguente
modo:

Condizioni iniziali

Inizializziamo tutti i τi (p) a ∞;

poniamo τ0(ps) = τ .

All’inizio del passo k avremo che τ0(p), . . . , τk−1(p) sono corrette
per ogni p ∈ S, mentre le restanti saranno ancora pari a ∞.
L’obiettivo del passo k è calcolare τk(p) per ogni fermata p.
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Passo k

Il passo k si articola in tre step.

Primo step

Per ogni p ∈ S poniamo τk(p) = τk−1(p), in modo da porre
una limitazione superiore per τk(p).
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Passo k

Il passo k si articola in tre step.

Secondo step

Si analizza ogni itinerario r esattamente una volta.
Definiamo T (r) = (t0, . . . , t|T (r)|−1), i viaggi lungo l’itinerario
r dal primo all’ultimo.
Sia, inoltre, et(r , pi ) il viaggio più veloce, se esiste, in r tale
per cui τdep(t, pi ) ≥ τk−1(pi ).
Per analizzare l’itinerario, lo percorriamo finché non troviamo
una fermata pi per cui et(r , pi ) è definita. Nel caso
chiamiamo viaggio corrente il viaggio corrispondente.
Continuiamo il procedimento percorrendo tutte le fermate
dell’itinerario r .
Per ogni fermata per cui è definita possiamo aggiornare τk(p)
usando et(r , p).
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Passo k

Notiamo che al secondo passo possiamo dover aggiornare il viaggio
corrente per k: a ogni fermata pi lungo r è possibile che ci sia un
viaggio più veloce per pi perché si è trovato al passo precedente un
modo più veloce per arrivare a pi . Si verifica, quindi, che
τk−1(pi ) < τarr (t, pi ) e si aggiorna il viaggio corrente ricalcolando
et(r , pi ).
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Passo k

Il passo k si articola in tre step:

Terzo step

Per ogni tracciato pedonale (pi , pj) ∈ F si pone
τk(pj) = minτk(pj), τk(pi ) + l(pi , pj)

Criteri d’arresto

L’algoritmo si ferma dopo il passo k se non è stato aggiornato
nessun valore τk(p) negli ultimi due step dell’iterazione.
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Complessità computazionale

Complessità computazionale

L’algoritmo impiega O(K (
∑

r∈R |r |+ |T |+ |F|)) operazioni per
produrre un fronte di Pareto di percorsi, dove K è il numero di
iterazioni.

Infatti, noi percorriamo ogni itinerario al più una volta: per
ciascuno di essi osserviamo

∑
r∈R |r | fermate. Per trovare et(r , ·)

guardiamo ogni viaggio di ogni itinerario al più una volta. E infine,
nel terzo step, studiamo ogni tracciato pedonale al più una volta.
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Marking

Una prima tecnica di miglioramento prevede di analizzare al passo
k solamente quegli itinerari che contengono almeno una fermata
raggiunta con k − 1 viaggi. Quindi, ha senso considerare solamente
gli itinerari che hanno avuto un aggiornamento al passo k − 1.

Lo si implementa segnando al passo k − 1 le fermate p per cui c’è
stato un miglioramento di τk−1(p) e analizzando, poi, al passo k
solo quegli itinerari che contengono una di queste fermate
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Local pruning

Per ogni fermata pi fissiamo un valore τ ∗ (pi ) che rappresenta il
più breve tempo di arrivo a pi noto. Al passo k consideriamo una
fermata solo quando il tempo di arrivo con k viaggi è minore di
τ ∗ (pi ).
Notiamo che il local pruning ci permette di evitare il primo step di
ogni iterazione.
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Target pruning

Infine, dato che siamo interessati solo ai viaggi che giungono al
target stop pt , non ha senso segnare tutte le fermate i cui tempi
d’arrivo sono maggiori di τ ∗ (pt)
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Transfer preferences e dominanza stretta

L’algoritmo MLC può essere esteso al concetto di dominanza
stretta.

Dominanza stretta

Un viaggio j1 domina strettamente un altro viaggio j2 se è
strettamente migliori in almeno un criterio.

La motivazione è quella di introdurre dei criteri di preferenza per le
location in cui avvengono i trasferimenti.

È possibile introdurre questa cosa in RAPTOR: quando si prende
un nuovo viaggio è sufficiente tenere traccia della fermata
preferibile in cui prendere il viaggio.
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McRAPTOR

È possibile estendere RAPTOR per gestire ulteriori criteri di
ottimizzazione, introducendo McRAPTOR.
McRAPTOR è in grado di gestire, per esempio, l’introduzione di
tariffe a zona.
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rRAPTOR

Per risolvere il range problem è possibile costruire l’estensione
rRAPTOR.
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Risultati

Un’analisi sul trasporto pubblico di Londra rivela che RAPTOR
performa meglio di LD e MLC che risolvono lo stesso problema,
essendo 9 volte più veloce di MLC e 6 volte più veloce di LD.
Risulta che RAPTOR è più veloce, di un fattore 2, anche di TD
che risolve, però, un problema più semplice, dal momento che non
ottimizza il numero di trasferimenti.
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Conclusioni e bibliografia

RAPTOR si rivela un algoritmo più efficiente delle soluzioni
esistenti: a differenza di queste non opera su un grafo e non
utilizza code di priorità.

Bibliografia:

Delling, Pajor, Wernkeck, Round-Based Public Transit
Routing, 2015.
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