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Introduzione
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Introduzione

L'obiettivo del progetto & presentare la decomposizione in valori
singolari casuale, un algoritmo per la riduzione della
dimensionalita per quando si tratta con dati in dimensione alta.

3/22



SVD standard
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La decomposizione in valori singolari (SVD) & una tecnica usata
per gestire dati con dimensioni molto alte.

SVD standard

Data una matrice A € R"*?, avente rango r, la sua
decomposizione in valori singolari standard (versione economica) &
la seguente:

A= UDV*

Dove U € R"™" e V € R™*" con colonne ortogonali e D € R™*"
diagonale.

Notiamo la definizione analoga: A= >"7_; dijujv}.
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Sottospazio best-fit

La proprieta fondamentale della SVD & che permette di calcolare la
miglior approssimazione di rango k dei dati, contenuti in una
matrice A.

Spazio best-fit di rango k

Il sottospazio best-fit di rango k & lo spazio L(v1,...,Vvk) generato
dalle prime k colonne della matrice V.

.

Miglior approssimazione di rango k

La miglior approssimazione di rango k della matrice A & la matrice

K

t

A= diu]
i=1

€
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Proprieta

E importante notare alcune proprieta matematiche della SVD.
Notiamo innanzitutto che la SVD ¢ la generalizzazione della
decomposizione mediante matrici ortogonali delle matrici
simmetriche secondo il teorema spettrale.
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Parallelismo con autovalori

A partire da questo parallelismo, studiamo alcune proprieta delle
matrici AA! e AtA.
Si calcola facilmente che

AAL = UD?Ut e A'A= VD?V!
Da cui:
AALU = UD? e A'AV = VD?

Cioé ogni valore singolare (non nullo) di A & la radice di un
autovalore di AA! e AtA.

Da cio segue che se A & simmetrica i valori singolari sono il valore
assoluto degli autovalori di A.
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Interpretazione intuitiva

Questo ci fornisce un’interpretazione intuitiva della SVD: le
colonne di U sono autovettori di AA! e le colonne di V sono
autovettori di AtA.
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Proprieta

Un'altra proprieta da notare & la seguente:

Le colonne di U forniscono una base ortonormale per lo spazio

delle colonne di A.
Le colonne di V forniscono una base ortonormale per lo spazio

delle righe di A.
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Invarianza per trasformazioni ortogonali

Vediamo, infine, come ultima proprieta che la SVD & invariante per
trasformazioni ortogonali:
Sia B = QA con Q ortogonale.
Vale che:
B'B = A'Q'QA = A’A
Quindi, per quanto osservato precedentemente, V e D della

decomposizione di B sono le stesse di A.
Calcoliamo, ora, Ug:

Ug = BVaD,' = QUa

Riassumendo:

B = QA= QUaDaVA = UgDaVy J
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Introduzione

SVD randomizzata

Si & dimostrato che, nel caso in cui la matrice dei dati A ha rango r
basso, esistono algoritmi di decomposizione molto efficienti basati
su metodi randomici. La SVD randomizzata & uno di questi.
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Algoritmo

Algoritmo: step 1

L'algoritmo si articola in tre step:
Step 1: Costruiamo una matrice di proiezione casuale P € R™*"
per lo spazio delle colonne di A € R"*™:

B = AP

Dato che B approssima A con buona probabilita, possiamo
calcolare la decomposizione QR della matrice B che ci permette di
ottenere una base ortonormale per A:

B =QR
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Algoritmo

Algoritmo: step 2

Step 2: Dato che le colonne di @ costituiscono una base
ortonormale di uno spazio di dimensione r << m, possiamo usare
Q@ per proiettare A in uno spazio piu piccolo:

C=Q'A
Vale che A = QC, con approssimazione maggiore tanto piu i valori

singolari o, decadono rapidamente per k > r.
Calcoliamo poi la SVD per C:

C = UcDe VE
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Algoritmo: step 3

Step 3: Infine, sfruttiamo le proprieta viste precedentemente per
calcolare la SVD di A.
Vale, infatti, che:

A= UDV!
Dove U= QUc, D = D¢, V = V.
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Proprieta

Oversampling

Nel caso in cui la matrice A sia una matrice con valori singolari o
non nulli per kK > r, la matrice approssimata B non genera
esattamente lo spazio delle colonne di A. In questi casi aumentare
il numero delle colonne di P da r a r + p migliora
significativamente i risultati.

Oversampling

Parliamo di oversampling quando aumentiamo di p il numero delle
colonne di P.

In generale, maggiore &€ p, minore & la discordanza dei valori
singolari della matrice approssimata.
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Proprieta

Iterazioni a potenza

Un altro problema si ha quando i valori singolari di A decadono
lentamente: in tal caso i valori che vengono troncati rappresentano
una perdita significativa di informazione.

In tal caso si processa A tramite le iterazioni a potenza creando
una nuova matrice A(9);

Al@) — (AA?)9A
| valori singolari di A(9) decadono pili rapidamente, infatti vale che:
Al = yp*a-tyt

Tuttavia le iterazioni a potenza sono molto costose.
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Proprieta

Errore

Alcune delle proprieta pit importanti della SVD randomizzata &
I'esistenza di maggiorazioni e minorazioni dell’errore.

Stime di errore

Dato r il rango della SVD desiderata, p il parametro di
oversampling e g il parametro di iterazioni a potenza, allora

valgono le seguenti:

IA = QCll2 > 011(A)

E(||A - QCll2) < (1 + \/pil . e¢;+p [ =) 5 0y 1 (A)
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Proprieta

Scelta delle proiezioni casuali

Le ultime osservazioni riguardano la scelta di P.
Proiezioni casuali gaussiane;

Matrici casuali uniformi;

°
°
@ Matrici di Rademacher;
o Matrici sparse;

°

Permutazioni della matrice identita.
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Implementazione

Implementazione

Per I'implementazione si rimanda allo script di matlab rSVD.mlx

19/22


/rSVD.mlx

Conclusioni e risultati
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Considerazioni

Dai risultati visti notiamo immediatamente che, con una corretta
scelta dei parametri di oversampling e di iterazioni a potenza p e g,
I'algoritmo di rSVD si dimostra molto piu efficiente della SVD
standard, dal momento che garantisce tempi di esecuzione molto
inferiori garantendo, pero, un'accuratezza pressoché analoga.

20/22



Conclusioni e risultati
oceo

Considerazioni

Per quanto riguarda la scelta dei parametri notiamo che:

@ All'aumentare del rango r aumenta I'accuratezza ma aumenta
anche il tempo d’esecuzione;

@ Il numero di iterazioni a potenza g ottimale nel caso studiato
e tra le 2 e le 5. Per valori piu piccoli e piu grandi I'errore
aumenta di molto, e al crescere del parametro g aumenta
tempo di esecuzione;

@ All'aumentare del parametro p |'errore decresce rapidamente e
il tempo di esecuzione non aumenta in modo significativo.
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Conclusioni

Possiamo concludere che la SVD randomizzata fornisce un
algoritmo molto efficiente per la riduzione della dimensionalita per
certi tipi di matrici: i parametri da cui dipende possono essere
scelti opportunamente per permettere un errore analogo alla SVD
standard ma garantendo un tempo di esecuzione significativamente
inferiore.
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