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3 Proprietà matematiche

4 SVD randomizzata
Introduzione
Algoritmo
Proprietà
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Introduzione SVD standard Proprietà matematiche SVD randomizzata Conclusioni e risultati

Introduzione

L’obiettivo del progetto è presentare la decomposizione in valori
singolari casuale, un algoritmo per la riduzione della
dimensionalità per quando si tratta con dati in dimensione alta.
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SVD

La decomposizione in valori singolari (SVD) è una tecnica usata
per gestire dati con dimensioni molto alte.

SVD standard

Data una matrice A ∈ Rn×d , avente rango r , la sua
decomposizione in valori singolari standard (versione economica) è
la seguente:

A = UDV t

Dove U ∈ Rn×r e V ∈ Rm×r con colonne ortogonali e D ∈ Rr×r

diagonale.

Notiamo la definizione analoga: A =
∑r

i=1 diiuiv
t
i .
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Sottospazio best-fit

La proprietà fondamentale della SVD è che permette di calcolare la
miglior approssimazione di rango k dei dati, contenuti in una
matrice A.

Spazio best-fit di rango k

Il sottospazio best-fit di rango k è lo spazio L(v1, . . . , vk) generato
dalle prime k colonne della matrice V.

Miglior approssimazione di rango k

La miglior approssimazione di rango k della matrice A è la matrice

Ak =
k∑

i=1

diiuiv
t
i
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Proprietà

È importante notare alcune proprietà matematiche della SVD.
Notiamo innanzitutto che la SVD è la generalizzazione della
decomposizione mediante matrici ortogonali delle matrici
simmetriche secondo il teorema spettrale.
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Parallelismo con autovalori

A partire da questo parallelismo, studiamo alcune proprietà delle
matrici AAt e AtA.
Si calcola facilmente che

AAt = UD2Ut e AtA = VD2V t

Da cui:
AAtU = UD2 e AtAV = VD2

Cioè ogni valore singolare (non nullo) di A è la radice di un
autovalore di AAt e AtA.
Da ciò segue che se A è simmetrica i valori singolari sono il valore
assoluto degli autovalori di A.
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Interpretazione intuitiva

Questo ci fornisce un’interpretazione intuitiva della SVD: le
colonne di U sono autovettori di AAt e le colonne di V sono
autovettori di AtA.
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Proprietà

Un’altra proprietà da notare è la seguente:

Le colonne di U forniscono una base ortonormale per lo spazio
delle colonne di A.
Le colonne di V forniscono una base ortonormale per lo spazio
delle righe di A.
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Invarianza per trasformazioni ortogonali

Vediamo, infine, come ultima proprietà che la SVD è invariante per
trasformazioni ortogonali:
Sia B = QA con Q ortogonale.
Vale che:

BtB = AtQtQA = AtA

Quindi, per quanto osservato precedentemente, V e D della
decomposizione di B sono le stesse di A.
Calcoliamo, ora, UB :

UB = BVAD
−1
A = QUA

Riassumendo:

B = QA = QUADAVA = UBDAVA
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Introduzione

SVD randomizzata

Si è dimostrato che, nel caso in cui la matrice dei dati A ha rango r
basso, esistono algoritmi di decomposizione molto efficienti basati
su metodi randomici. La SVD randomizzata è uno di questi.
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Algoritmo

Algoritmo: step 1

L’algoritmo si articola in tre step:
Step 1: Costruiamo una matrice di proiezione casuale P ∈ Rm×r

per lo spazio delle colonne di A ∈ Rn×m:

B = AP

Dato che B approssima A con buona probabilità, possiamo
calcolare la decomposizione QR della matrice B che ci permette di
ottenere una base ortonormale per A:

B = QR
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Algoritmo

Algoritmo: step 2

Step 2: Dato che le colonne di Q costituiscono una base
ortonormale di uno spazio di dimensione r << m, possiamo usare
Q per proiettare A in uno spazio più piccolo:

C = QtA

Vale che A ≈ QC , con approssimazione maggiore tanto più i valori
singolari σk decadono rapidamente per k > r .
Calcoliamo poi la SVD per C :

C = UCDCV
t
C
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Algoritmo

Algoritmo: step 3

Step 3: Infine, sfruttiamo le proprietà viste precedentemente per
calcolare la SVD di A.
Vale, infatti, che:

A = UDV t

Dove U = QUC , D = DC , V = VC .
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Proprietà

Oversampling

Nel caso in cui la matrice A sia una matrice con valori singolari σk
non nulli per k > r , la matrice approssimata B non genera
esattamente lo spazio delle colonne di A. In questi casi aumentare
il numero delle colonne di P da r a r + p migliora
significativamente i risultati.

Oversampling

Parliamo di oversampling quando aumentiamo di p il numero delle
colonne di P.
In generale, maggiore è p, minore è la discordanza dei valori
singolari della matrice approssimata.
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Proprietà

Iterazioni a potenza

Un altro problema si ha quando i valori singolari di A decadono
lentamente: in tal caso i valori che vengono troncati rappresentano
una perdita significativa di informazione.
In tal caso si processa A tramite le iterazioni a potenza creando
una nuova matrice A(q):

A(q) = (AAt)qA

I valori singolari di A(q) decadono più rapidamente, infatti vale che:

A(q) = UD2q−1V t

Tuttavia le iterazioni a potenza sono molto costose.
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Proprietà

Errore

Alcune delle proprietà più importanti della SVD randomizzata è
l’esistenza di maggiorazioni e minorazioni dell’errore.

Stime di errore

Dato r il rango della SVD desiderata, p il parametro di
oversampling e q il parametro di iterazioni a potenza, allora
valgono le seguenti:

||A− QC ||2 ≥ σr+1(A)

E(||A− QC ||2) ≤ (1 +

√
r

p − 1
+

e
√
r + p

p

√
m − r)

1
2q+1σr+1(A)
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Proprietà

Scelta delle proiezioni casuali

Le ultime osservazioni riguardano la scelta di P.

Proiezioni casuali gaussiane;

Matrici casuali uniformi;

Matrici di Rademacher;

Matrici sparse;

Permutazioni della matrice identità.
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Implementazione

Implementazione

Per l’implementazione si rimanda allo script di matlab rSVD.mlx
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Considerazioni

Dai risultati visti notiamo immediatamente che, con una corretta
scelta dei parametri di oversampling e di iterazioni a potenza p e q,
l’algoritmo di rSVD si dimostra molto più efficiente della SVD
standard, dal momento che garantisce tempi di esecuzione molto
inferiori garantendo, però, un’accuratezza pressoché analoga.
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Considerazioni

Per quanto riguarda la scelta dei parametri notiamo che:

All’aumentare del rango r aumenta l’accuratezza ma aumenta
anche il tempo d’esecuzione;

Il numero di iterazioni a potenza q ottimale nel caso studiato
è tra le 2 e le 5. Per valori più piccoli e più grandi l’errore
aumenta di molto, e al crescere del parametro q aumenta
tempo di esecuzione;

All’aumentare del parametro p l’errore decresce rapidamente e
il tempo di esecuzione non aumenta in modo significativo.
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Conclusioni

Possiamo concludere che la SVD randomizzata fornisce un
algoritmo molto efficiente per la riduzione della dimensionalità per
certi tipi di matrici: i parametri da cui dipende possono essere
scelti opportunamente per permettere un errore analogo alla SVD
standard ma garantendo un tempo di esecuzione significativamente
inferiore.
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