
Relazione del corso di Analisi Numerica

Gianluca Covini, # Matricola 481021, Università di Pavia

9 gennaio 2026

1 Metodi iterativi per sistemi lineari
Nella presente sezione andiamo a trattare gli esercizi riguardo ai metodi iterativi per la
risoluzione di sistemi lineari, cioè i metodi che permettono di costruire una successione di
soluzioni approssimate per un dato sistema Ax = b che tendono alla soluzione esatta del
sistema. In particolare, verranno trattati i metodi di Jacobi e Gauss-Seidel e il metodo del
gradiente coniugato.

1.1 Esercizio 1
L’esercizio richiede l’implementazione del metodo di Jacobi e del metodo di Gauss-Seidel per
la risoluzione di metodi lineari della forma Ax = b.

Entrambi questi metodi sono metodi di splitting, cioè metodi stazionari della forma

x(k+1) = P−1(Nx(k) + b)

dove A = P −N .
Per l’implementazione si sfrutta la riformulazione equivalente

x(k+1) = x(k) + P−1r(k)

dove l’elemento r(k) è il residuo della k-esima iterazione.
Il problema si riduce, quindi, alla risoluzione, a ogni iterazione, di un sistema lineare

Pp(k) = r(k) dove p(k) è l’elemento da aggiungere a x(k) per ottenere x(k+1). La risoluzione
di questo sistema è computazionalmente molto più economica della risoluzione diretta del
sistema Ax = b per via della scelta opportuna della matrice P : nel caso del metodo di Jacobi
la matrice P è la matrice diagonale di A; nel metodo di Gauss-Seidel è la matrice triangolare
inferiore di A. In questo modo i sistemi da risolvere sono sistemi triangolari che si possono
affrontare con metodi diretti non molto costosi.

Fissato un sistema Ax = b, le funzioni che andiamo a implementare sono due funzioni
che, dati A, b, un valore x(0) iniziale, restituiscano un un vettore x, soluzione approssimata
del sistema Ax = b, ottenuta tramite il metodo di Jacobi. Le funzioni, inoltre, restituiranno
anche v, il vettore contenente la norma euclidea del residuo a ogni iterazione e iter, il numero
delle iterazione effettuate. Vengono inoltre fissati come criteri d’arresto due valori, maxit,
che indica il massimo numero di iterazioni, e tol, che indica la tolleranza sul rapporto tra il
valore della norma del k-esimo residuo e la norma del primo residuo r(0).

Metodo di Jacobi:

1 function [x, v, iter] = Jacobi(A, b, x0 , maxit , tol)
2 P = diag(diag(A)); % matrice diagonale di A
3 x = x0;
4 r0 = b-A*x0;
5 v=zeros(maxit , 1); % vettore da riempire
6 iter = 1;

1

7 r = r0;
8
9 while iter <maxit && norm(r)>tol*norm(r0)
10 r = b-A*x;
11 p = P\r; % risoluzione del sistema Pp = r
12 x = x+p;
13 v(iter) = norm(r);
14 iter = iter +1;
15 end
16
17 v = v(1: iter); % taglio vettore in base al n. di

iterazioni
18 end

Metodo di Gauss-Seidel:

1 function [x, v, iter] = GaussSeidel(A, b, x0 , maxit , tol)
2 P = tril(A); % matrice trangolare inferiore A
3 x = x0;
4 r0 = b-A*x0;
5 v=zeros(maxit , 1);
6 iter = 1;
7 r = r0;
8
9 while iter <maxit && norm(r)>tol*norm(r0)
10 r = b-A*x;
11 p = P\r;
12 x = x+p;
13 v(iter) = norm(r);
14 iter = iter +1;
15 end
16
17 v = v(1: iter);
18 end

Notiamo che l’implementazione dei due metodi differisce solo nella scelta della matrice P .
La struttura, poi, è la stessa e prevede per ogni iterazione:

• Calcolo del residuo mediante r = b−Ax;

• Risoluzione del sistema Pp = r;

• Calcolo dell’iterata successiva mediante x = x+ p.

1.2 Esercizio 2
Il secondo esercizio chiede di applicare i metodi implementati precedentemente alla risoluzione
del sistema lineare Ax = b di dati

A =

 7 6 3
2 5 −4
−4 −3 8

 , b =

 3
−1
2


e di rappresentare la storia di convergenza tramite un grafico.
Dalla teoria ci possiamo aspettare di avere effettivamente convergenza: questa informa-

zione ci deriva dal calcolo dei raggi spettrali delle matrici di iterazione. Infatti, dato che i
metodi di splitting sono sempre consistenti, possiamo affermare che i metodi implementati

2

convergono se e solo se il raggio spettrale delle matrici di iterazione è strettamente minore di
1. Ricordiamo che la matrice B di iterazione nel caso di metodi di splitting si calcola con la
formula B = P−1N .

Nel caso del metodo di Jacobi, calcoliamo B = eye(3)-D\A, dove D è la matrice diagonale
di A e risulta

B =

 0 −0.8571 −0.4286
−0.4000 0 0.8000
0.5000 0.3750 0


Calcolando, poi, il raggio spettrale ρ di B tramite max(abs(eig(B))) otteniamo che ρ =
0.8661 < 1.

Ripetendo lo stesso procedimento per il metodo di Gauss-Seidel, con la sola differenza
che la matrice B si calcola mediante B = (D-E)\F, dove D è la matrice diagonale di A, E
è la matrice triangolare strettamente inferiore di A con il segno opposto e F è la matrice
triangolare strettamente superiore di A con il segno opposto. Risulta, quindi:

B =

0 −0.8571 −0.4286
0 0.3429 0.9714
0 −0.3000 0.1500


e ρ = 0.5855 < 1.
Inoltre, possiamo anche aspettarci che la convergenza non sia monotona nella norma

euclidea in quanto la norma euclidea delle matrici di iterazione è maggiore di 1 per entrambi
i metodi, 1.1081 e 1.3075 rispettivamente.

Implementazione dell’esercizio:

1 A = [7 6 3; 2 5 -4; -4 -3 8];
2 b=[3 -1 2]’;
3
4 [~, v1, iter1] = Jacobi(A, b, 0, 1000, 1e-07);
5 t1 = 1:1: iter1;
6 [~, v2, iter2] = GaussSeidel(A, b, 0, 1000, 1e-07);
7 t2 = 1:1: iter2;
8
9 semilogy(t1 , v1, t2, v2)
10 title(’Grafico␣di␣convergenza ’)
11 xlabel(’k’)
12 ylabel(’||r(k)||’)
13 legend(’Jacobi ’, ’Gauss -Seidel ’)

Il grafico che mostra la storia di convergenza è stato realizzato ponendo sull’asse delle x
le iterazione e sull’asse delle y le norme euclidee dei residui a ogni iterazione.

3

Notiamo che effettivamente il grafico conferma le nostre previsioni di convergenza non
monotona.

1.3 Esercizio 3
Il terzo esercizio chiede di applicare i due algoritmi al sistema di dati

A =


1 −1.16

0.16
.
. −1.16

0.16 1

 , b = A ∗

1...
1


Le osservazioni che si possono fare sono del tutto analoghe a quelle fatte per l’esercizio

precedente: possiamo studiare raggio spettrale e norma euclidea delle matrici di iterazioni
per vedere se c’è convergenza e, eventualmente, se questa è monotona.

Nel caso del metodo di Jacobi si calcola, come fatto più avanti nell’implementazione, che
il raggio spettrale ρ = 0.8572 < 1, quindi ci possiamo aspettare che il metodo converga.
Notiamo, inoltre, che la norma euclidea della matrice è ||B|| = 1.3173 > 1, il che ci dice che
la convergenza in norma euclidea non sarà monotona.

Nel caso del metodo di Gauss-Seidel, invece, il raggio spettrale e la norma, calcolati anche
in questo caso nell’implementazione dell’esercizio, sono rispettivamente ρ = 0.7348 < 1 e
||B|| = 1.3797 > 1, quindi anche in questo caso avremo convergenza non monotona.

Implementazione dell’esercizio:

1 Zu = -1.16*[zeros(29, 1) eye (29); zeros(1, 30)];
2 Zl = 0.16*[zeros(29, 1) eye (29); zeros(1, 30)]’;
3 A = eye (30)+Zu+Zl;
4 b = A*ones(30, 1);
5 tol = 1e-07;
6 maxit = 1000;
7 x0 = zeros(30, 1);
8
9 [~, v1, iter1] = Jacobi(A, b, x0, maxit , tol);
10 t1 = 1:1: iter1;
11 [~, v2, iter2] = GaussSeidel(A, b, x0, maxit , tol);
12 t2 = 1:1: iter2;

4

13
14 semilogy(t1 , v1, t2, v2)
15 title(’Grafici␣di␣convegenza ’)
16 xlabel(’k’)
17 ylabel(’||r(k)||’)
18 legend(’Jacobi ’, ’Gauss -Seidel ’)
19
20 D = diag(diag(A));
21 E = -tril(A)+D;
22 F = -triu(A)+D;
23
24 J = eye (30)-D\A;
25 ro_jacobi = max(abs(eig(J)));
26 norm_jacobi = norm(J);
27
28 GS = (D-E)\F;
29 ro_gs = max(abs(eig(GS)));
30 norm_gs = norm(GS);

Notiamo che effettivamente il grafico conferma le nostre previsioni di convergenza non
monotona.

1.4 Esercizio 4
L’esercizio quattro richiede di scrivere una funzione che implementi il metodo del gradiente
coniugato e di usarla per risolvere un sistema dato.

Il metodo del gradiente coniugato è un metodo iterativo per risolvere sistemi lineari sim-
metrici definiti positivi (SPD). In generale per risolvere sistemi SPD si usano metodi della
forma

x(k+1) = x(k) + αkp
(k), dove αk =

p(k)tr(k)

p(k)tAp(k)

Il metodo del gradiente coniugato si caratterizza per la scelta di

p(k) = r(k) + βkp
(k−1), dove βk = − p(k−1)tAr(k)

p(k−1)tAp(k−1)

5

intendendo per r(k) il residuo che, nel caso di metodi per sistemi SPD, possiamo calcolare
usando la seguente formula che verrà sfruttata anche per l’implementazione:

r(k+1) = r(k) − αkAp
(k), r(0) = p(0)

Per l’implementazione sfruttiamo il fatto che αk e βk si esprimono equivalentemente nei
seguenti modi:

αk =
||r(k)||22
p(k)tAp(k)

(1)

βk =
||r(k+1)||22
||r(k)||22

(2)

Dato il sistema Ax = b, la funzione che scriviamo prende in input la matrice A, il vettore
b, un dato iniziale x0 e, come criteri d’arresto, il numero massimo di iterazioni maxit e la
tolleranza tol sulle norme dei residui. La funzione restituisce, poi, la soluzione approssimata
x calcolata con il metodo del gradiente coniugato, il vettore v con le norme dei residui, il
numero di iterazioni iter e il vettore X contenente tutte le iterate, che servirà per l’esercizio
successivo.

Implementazione del metodo del gradiente coniugato:

1 function [x, v, iter , X] = CG(A,b,x0,maxit ,tol)
2 [n, ~] = size(x0);
3 r0 = b-A*x0;
4 p = r0;
5 r = r0;
6 v = zeros(maxit , 1);
7 v(1) = norm(r0);
8 X = zeros(n, maxit);
9 X(:, 1) = x0;
10 iter = 1;
11 x = x0;
12
13 while iter <= maxit && norm(r) > tol*norm(r0)
14 iter = iter +1;
15 alfa = ((norm(r))^2)/(p’*A*p);
16 x = x+alfa*p;
17 r_old = r;
18 r = r-alfa*A*p;
19 beta = ((norm(r))^2)/(norm(r_old)^2);
20 p = r+beta*p;
21 v(iter) = norm(r);
22 X(:, iter) = x;
23 end
24
25 v = v(1: iter);
26 X = X(:, 1:iter);
27 end

Come notiamo, gli step implementati per ogni iterazione sono:

• Calcolo di α con la formula (1);

• Calcolo di x come x = x+ αp;

• Calcolo di β con la formula (2);

6

• Calcolo di p come r + βp;

La seconda parte dell’esercizio chiede, poi, di applicare l’algoritmo alla risoluzione del
sistema Ax = b, prendendo come A la matrice di Poisson 1600 x 1600, una matrice sparsa, e
b = A ∗ [1, . . . , 1] e di confrontare graficamente la storia di convergenza con quella ottenuta
con i metodi di Jacobi e Gauss-Seidel.

Possiamo notare è che la matrice A essendo una matrice sparsa viene memorizzata da
Matlab in maniera differente; infatti, chiamando la matrice A ci vengono indicate solamente
le posizioni con entrate non nulle e il valore di tali entrate.

Implementazione dell’esercizio:

1 n = 40;
2 A = gallery(’poisson ’, n);
3 b = A*ones(n*n, 1);
4 x0 = zeros(n*n, 1);
5 maxit = 1000;
6 tol = 1e-7;
7
8 [~, vCG , iterCG , ~] = CG(A, b, x0, maxit , tol);
9 tCG = 1:1: iterCG;
10 [~, vJ, iterJ] = Jacobi(A, b, x0, maxit , tol);
11 tJ = 1:1: iterJ;
12 [~, vGS , iterGS] = GaussSeidel(A, b, x0, maxit , tol);
13 tGS = 1:1: iterGS;
14
15 semilogy(tCG , vCG , tJ, vJ , tGS , vGS)
16 title(’Grafico␣di␣convergenza ’)
17 xlabel(’k’)
18 ylabel(’||r(k)||’)
19 legend(’Gradiente␣Coniugato ’, ’Jacobi ’, ’Gauss -Seidel ’)

Notiamo che la convergenza con il metodo del gradiente coniugato è molto più veloce di
quella con i metodi di Jacobi e Gauss-Seidel.

7

1.5 Esercizio 5
L’esercizio richiede di mostrare graficamente la storia di convergenza dell’errore in norma A
del metodo del gradiente coniugato per la risoluzione del sistema dell’esercizio precedente
con A presa 100 x 100 e confrontarlo con la stima teorica.

Come prima cosa è stato necessario definire la norma A, data come

||y||A =
√
ytAy, y ∈ Rn A ∈ Rnxn

1 function n = normA(y, A)
2 n = sqrt(y’*A*y);

La stima teorica che andiamo ora a considerare segue questa formula:

||e(k)||A
||e(0)||A

≤ 2(

√
K(A)− 1√
K(A) + 1

)k,

dove e(k) è l’errore al passo k-esimo e K(A) e il numero di condizionamento relativo del
problema Ax = b. Ricordiamo, inoltre, che il condizionamento per una matrice simmetrica
definita positiva si calcola come

K(A) =
λmax

λmin
,

con λmax e λmax autovalore minimo e massimo rispettivamente.
Ci aspettiamo, quindi, un grafico in cui l’errore effettivo sia sempre più piccolo della stima

teorica.
Possiamo prevedere anche che la convergenza sia monotona in quanto la teoria ci garan-

tisce che ||e(k+1)|| ≤ ||e(k)||
L’implementazione è stata fatta tramite un ciclo for sul numero di iterazioni abbiamo

calcolato a ogni passaggio la norma A dell’errore relativo e il valore della stima teorica in
quel passaggio e poi rappresentati entrambi in un grafico, ponendo il numero di iterazioni
sull’asse x.

Implementazione dell’esercizio:

1 n = 100;
2 A = gallery(’poisson ’, n);
3 b = A*ones(n*n, 1);
4 x0 = zeros(n*n, 1);
5 maxit = 1000;
6 tol = 1e-7;
7
8 [x, ~, iter , X] = CG(A, b, x0, maxit , tol);
9 t = 1:1: iter;
10
11 lambda_max = max(eigs(A));
12 lambda_min = eigs(A,1,’smallestabs ’);
13 K = lambda_max/lambda_min;
14
15 e = zeros(iter);
16 stima = zeros(iter);
17 for k=1:1: iter
18 e(k) = normA(x-X(:, k), A)/normA(x-x0, A);
19 stima(k) = 2*((sqrt(K) -1)/(sqrt(K)+1))^k;
20 end
21

8

22 semilogy(t, e, t, stima)
23 title(’Grafico␣di␣convergenza ’)
24 xlabel(’k’)
25 ylabel(’||e(k)||_A’)

Notiamo che effettivamente l’errore è sempre più piccolo della stima teorica.
Notiamo inoltre che la convergenza in norma A è monotona come prevede la teoria.

1.6 Esercizio 6
L’ultimo esercizio richiede di risolvere sempre lo stesso sistema Ax = b usando, però, il metodo
del gradiente coniugato precondizionato e confrontare il numero di iterazioni necessarie.

Si tratta, in questo caso, di sostituire il problema Ax = b con il problema PA = Pb. La
matrice P è il precondizionatore e si può scegliere in vari. In questo caso l’esercizio richiede
che vengano usati tre precondizionatori:

• Jacobi: P = D;

• Gauss-Seidel simmetrico: P = (D − E)D−1(D − E)t;

• Cholesky incompleto: P = ichol(A).

Dove D è la matrice diagonale di A e E la matrice triangolare strettamente inferiore di A
con segni opposti.

Per l’implementazione abbiamo usato la funzione built-in di Matlab pcg.

Implementazione dell’esercizio:

1 D = diag(diag(A));
2 E = -tril(A, -1);
3
4 [~, ~, ~, iterJ] = pcg(A, b, tol , maxit , D);
5
6 [~, ~, ~, iterGS] = pcg(A, b, tol , maxit , (D-E)/D, (D-E)’);
7
8 L = ichol(A);
9 [~, ~, ~, iterIC] = pcg(A, b, tol , maxit , L, L’);

Notiamo che le iterazioni ottenute sono le seguenti:

9

• Gradiente coniugato standard: 173;

• Jacobi: 172;

• Gauss-Seidel: 645;

• Cholesky: 71.

È interessante notare che ciò si accorda perfettamente con la teoria. Possiamo, infatti,
stimare la velocità di convergenza osservando il numero di condizionamento delle matrici: la
stima dell’errore usata nell’esercizio precedente, infatti, ci dice che la convergenza è tanto più
veloce, tanto più è piccolo il condizionamento della matrice del sistema.

Calcolando i numeri di condizionamento di A e di P−1A al variare di P precondizionatore,
otteniamo che:

• Il condizionamento di A è molto simile a quello ottenuto con il precondizionatore di
Jacobi e sono entrambi dell’ordine di 103;

• Il condizionamento con il precondizionatore di Gauss-Seidel è più grande, dell’ordine
di 104;

• Il condizionamento con il precondizionatore di Cholseky è molto più piccolo ed è circa
4.

10

2 Integrazione numerica
Nella presente sezione andiamo a trattare le formule di quadratura per l’approssimazione
numerica di integrali definiti.

Le formule di quadratura sono formule che approssimano il valore degli integrali definiti
nel seguente modo: ∫ b

a

f(x) dx ≈
n∑

i=0

αif(xi)

A variare tra i diversi metodi è la scelta dei nodi di quadratura xi e dei pesi αi.

2.1 Esercizio 1
Nel primo esercizio si chiede l’implementazione dei metodi di di integrazione composita di
punto medio, trapezio e Cavalieri- Simpson.

Questi metodi sono formule interpolatorie: ciò significa che la scelta dei pesi è la stessa
ed è

αi =

∫ b

a

li(x) dx,

dove li sono i polinomi della base di Lagrange. A distinguere i diversi metodi è il numero di
nodi di quadratura, rispettivamente 1, 2 e 3, presi equispaziati all’interno dell’intervallo.

Si chiede di implementare i metodi in integrazione composita: ciò significa che i metodi
non sono applicati su tutto l’intervallo [a, b], ma l’intervallo viene iniziale in m sottointervalli
di stessa ampiezza su cui viene applicata singolarmente la formula di quadratura.

Le funzioni implementate prendono in input la funzione f da integrare, gli estremi di
integrazione a e b e il numero m di sottointervalli per l’integrazione composita.

Metodo del punto medio:

1 function I = pto_medio(f, a, b, m)
2 h = (b - a)/m;
3
4 S = 0;
5 for i=1:m
6 x = a + h/2 + (i-1)*h;
7 S = S + f(x);
8 end
9
10 I = h*S;
11 end

Metodo del trapezio:

1 function I = trapezio(f, a, b, m)
2 h = (b - a)/m;
3
4 S = 0;
5 for i=1:m-1
6 x = a + i*h;
7 S = S + 2*f(x);
8
9 end
10
11 I = h/2 * (f(a) + S + f(b));
12 end

11

Metodo di Cavalieri-Simpson:

1 function I = Cavalieri(f, a, b, m)
2 h = (b - a)/m;
3
4 S = 0;
5 for i=1:2*m-1
6 x = a + i*h/2;
7
8 if rem(i, 2)==0
9 S = S + 2*f(x);
10 else
11 S = S + 4*f(x);
12 end
13
14 end
15
16 I = h/6 * (f(a) + S + f(b));
17 end

L’implementazione in tutti e tre i casi le formule ricavate nella teoria: si calcola prima
il nodo successivo x e si somma, poi, f(x) opportunamente pesata; l’approssimazione resti-
tuita corrisponde alla somma finale moltiplicata per un peso dipendente dall’ampiezza dei
sottointervalli.

L’esercizio chiede, poi, di verificare il grado di esattezza delle formule. Per farlo ci serviamo
dell’osservazione che, essendo sia l’integrale che le formule di quadratura lineari, se le formule
sono esatte su xj con j che va da 0 a n, allora il grado di esattezza è n.

La teoria ci dice che il grado di esattezza delle tre formule implementate è rispettivamente
1, 1 e 3. Possiamo, quindi, scrivere uno script che verifica ciò utilizzando l’osservazione fatta
sopra.

Verifica del grado di esattezza:

1 f_0 = @(x)(1);
2 f_1 = @(x)(x);
3 f_2 = @(x)(x^2);
4 f_3 = @(x)(x^3);
5 f_4 = @(x)(x^4);
6
7 a = -1;
8 b = 1;
9
10 m = 10000;
11
12 eps = 1e-10;
13
14 pm_0 = pto_medio(f_0 , a, b, m);
15 pm_1 = pto_medio(f_1 , a, b, m);
16 pm_2 = pto_medio(f_2 , a, b, m);
17
18 test = [abs(pm_0 -2)<eps; abs(pm_1 -0)<eps];
19 if all(test ==1)
20 disp(’Verifica␣punto␣medio␣superata ’)
21 end
22

12

23 t_0 = trapezio(f_0 , a, b, m);
24 t_1 = trapezio(f_1 , a, b, m);
25 t_2 = trapezio(f_2 , a, b, m);
26
27 test = [abs(t_0 -2)<eps; abs(t_1 -0)<eps];
28 if all(test ==1)
29 disp(’Verifica␣trapezio␣superata ’)
30 end
31
32 c_0 = Cavalieri(f_0 , a, b, m);
33 c_1 = Cavalieri(f_1 , a, b, m);
34 c_2 = Cavalieri(f_2 , a, b, m);
35 c_3 = Cavalieri(f_3 , a, b, m);
36 c_4 = Cavalieri(f_4 , a, b, m);
37
38 test = [abs(c_0 -2)<eps; abs(c_1 -0)<eps; abs(c_2 -2/3)<eps; abs(

c_3 -0)<eps];
39 if all(test ==1)
40 disp(’Verifica␣Cavalieri␣superata ’)
41 end

Eseguendo lo script notiamo che effettivamente tutte le verifiche vengono superate.

2.2 Esercizio 2
L’esercizio chiede di usare le tre funzioni implementate per approssimare l’integrale e tracciare
il grafico degli errori in funzione dell’ampiezza h dei sottointervalli in modo da determinare
graficamente l’ordine di convergenza.

Dalla stima dell’errore fornitoci dalla teoria ci possiamo aspettare che il metodo del punto
fisso e quello del trapezio abbiano ordine di convergenza 2, mentre il metodo di Cavalieri-
Simpson abbia ordine 4.

Implementazione dell’esercizio:

1 f = @(x)(x*exp(1)^(-x)*cos (2*x));
2 a = 0;
3 b = 2*pi;
4
5 I = (3*(exp (1)^(-2*pi) -1) -10*pi*exp (1)^(-2*pi))/25;
6
7 % pto medio
8
9 h = zeros(5, 1);
10 E_pm = zeros(5, 1);
11 i = 1;
12 for esp =4:8
13 m = 2^esp;
14 h(i) = (b-a)/m;
15 E_pm(i) = abs(pto_medio(f, a, b, m)-I);
16 i = i+1;
17 end
18
19 % trapezio
20
21 h = zeros(5, 1);

13

22 E_t = zeros(5, 1);
23 i = 1;
24 for esp =4:8
25 m = 2^esp;
26 h(i) = (b-a)/m;
27 E_t(i) = abs(trapezio(f, a, b, m)-I);
28 i = i+1;
29 end
30
31 % Cavalieri
32
33 h = zeros(5, 1);
34 E_c = zeros(5, 1);
35 i = 1;
36 for esp =4:8
37 m = 2^esp;
38 h(i) = (b-a)/m;
39 E_c(i) = abs(Cavalieri(f, a, b, m)-I);
40 i = i+1;
41 end
42
43 semilogy(h, E_pm , h, E_t , h, E_c , h, h.^2, h, (h/3) .^4)
44 legend(’Pto␣medio’, ’Trapezio ’, ’Cavalieri -Simpson ’, ’y␣=␣h^2’,

’y␣=␣h^4’, ’Location ’, ’Southeast ’)
45 title(’Errore␣di␣integrazione ’)
46 xlabel(’h’)
47 ylabel(’Errore ’)

Il grafico rappresenta sull’asse delle x l’ampiezza h dell’intervallo per m che raddoppia a
ogni passaggio da 0 a 256.

Il risultato è in linea con le aspettative: notiamo, infatti che l’andamento degli errori
del metodo del punto medio e del trapezio è lo stesso della funzione h2, quindi l’ordine di
convergenza è 2, mentre il metodo di Cavalieri-Simpson si comporta come h4, quindi ha
ordine 4.

Notiamo, anche, che l’andamento crescente dei grafici degli errori è del tutto giustificato
dal fatto che sull’asse delle x è stato posto h. Ricordiamo, infatti, che h = b−a

m , quindi per

14

h grandi, il numero di iterazioni m è piccolo, il che significa che la precisione diminuisce, e
quindi l’errore aumenta, all’aumentare di h. Peraltro la convergenza si ha per h che tende a
0.

2.3 Esercizio 3
L’esercizio 3 chiede di calcolare tramite le formule del punto medio e di Cavalieri-Simpson il
numero minimo di sottointervalli per approssimare con un errore minore di 10−4 l’integrale∫ 5

0

1

1 + (x− π)2
dx

Per farlo si usa la stima a posteriori dell’errore che ci permette di calcolare l’errore per
una formula a n+ 1 punti con 2m sottointervalli nel seguente modo:

1

2n+p − 1
(In,2m(f)− In,m(f)), (3)

con In,m(f), la formula di quadratura composita a n + 1 punti su m intervalli; p vale 2
se n pari, 1 se dispari.

Noi utilizzeremo la formula per n = 0, nel caso del trapezio, n = 2, nel caso di Cavalieri-
Simpson. Come m partiremo da 0 e raddoppieremo fino all’ottenimento dell’accuratezza
richiesta.

Implementazione dell’esercizio:

1 f = @(x)(1/(1+(x-pi)^2));
2 a = 0;
3 b = 5;
4 eps = 1e-4;
5
6 E_pm = 100;
7 esp = -1;
8 n = 0;
9 p = 2;
10 while E_pm > eps
11 esp = esp+1;
12 m = 2^esp;
13 I_2m = pto_medio(f, a, b, 2*m);
14 I_m = pto_medio(f, a, b, m);
15 E_pm = abs ((1/(2^(n+p) -1))*(I_2m - I_m));
16 end
17 disp (2*m)
18
19 E_c = 100;
20 esp = -1;
21 n = 2;
22 p = 2;
23 while E_c > eps
24 esp = esp+1;
25 m = 2^esp;
26 I_2m = Cavalieri(f, a, b, 2*m);
27 I_m = Cavalieri(f, a, b, m);
28 E_c = abs ((1/(2^(n+p) -1))*(I_2m - I_m));
29 end
30 disp (2*m)

15

Nell’implementazione il risultato che viene visualizzato è 2m, poiché la formula (3) resti-
tuisce l’errore su 2m intervalli.

Il risultato restituito è di 64 iterazioni per la formula del punto fisso e 16 per quella di
Cavalieri-Simpson. Ciò è in accordo con il fatto che l’ordine di convergenza del metodo di
Cavalieri-Simpson, che è 4, è due volte maggiore dell’ordine di convergenza del metodo di
punto medio, che è 2.

2.4 Esercizio 4
L’esercizio 4 richiede di implementare la formula di quadratura di Gauss a due punti sull’in-
tervallo [−1, 1] e di verificarne il grado di esattezza.

Una formula di quadratura di Gauss a n punti è una formula di quadratura avente
grado esattezza massimo, cioè avente grado 2n + 1. Si dimostra che essa si può definire
equivalentemente come una formula del tipo

n∑
i=1

αif(xi)

avente come nodi xi le radici di un polinomio di grado n ortogonale a Pn−1, insieme dei
polinomi di grado minore o uguale a n− 1.

A tal proposito si sfrutta la formula ricorsiva per definire i polinomi pn ∈ Pn ortogonali
a Pn−1:

p−1(x) = 0;

p0(x) = 1;

pk+1(x) = xpk(x)− βkpk−1(x), con βk =
(pk, pk)w

(pk−1, pk−1)w
.

Nel nostro caso dobbiamo calcolare p2. È immediato vedere che p1 = x. Risulta, quindi,

p2(x) = x2 − β1
Resta da calcolare β1:

(p1, p1)w =

∫ 1

−1
x2 dx =

2

3

(p0, p0)w =

∫ 1

−1
1 dx = 2

Da cui,

β1 =
1

3

E quindi:

p2(x) = x2 − 1

3

Risulta immediato vedere che le radici di p2 sono ± 1√
3
.

Per calcolare i pesi αi sfruttiamo il fatto che una formula di Gauss su due punti ha grado
di esattezza 3 e imponiamo l’esattezza della formula sui polinomi di grado 0 e 1.

α0 + α1 =

∫ 1

−1
dx = 2

α0(−
1√
3
) + α1(

1√
3
) = 0

16

E quindi è immediato vedere che

α0 = 1, α1 = 1.

Noti, quindi, gli xi e gli αi, possiamo implementare la formula di quadratura che avrà la
forma:

I2(f) = f(− 1√
3
) + f(

1√
3
)

Implementazione della formula:

1 function I = gauss(f)
2 I = f(-1/sqrt (3)) + f(1/ sqrt (3));
3 end

Scriviamo, ora, per verificare che il grado di esattezza sia proprio 3 uno script analogo a
quello fatto nell’esercizio 1 per le altre formule di quadratura.

Verifica del grado di esattezza:

1 f_0 = @(x)1;
2 I_0 = 2;
3 Ig_0 = gauss(f_0);
4 eps = 1e-15;
5 disp(abs(I_0 - Ig_0) < eps)
6
7 f_1 = @(x)x;
8 I_1 = 0;
9 Ig_1 = gauss(f_1);
10 disp(abs(I_1 - Ig_1) < eps)
11
12 f_2 = @(x)x^2;
13 I_2 = 2/3;
14 Ig_2 = gauss(f_2);
15 disp(abs(I_2 - Ig_2) < eps)
16
17 f_3 = @(x)x^3;
18 I_3 = 0;
19 Ig_3 = gauss(f_3);
20 disp(I_3 == Ig_3)
21 disp(abs(I_3 - Ig_3) < eps)
22
23 f_4 = @(x)x^4;
24 I_4 = 2/5;
25 Ig_4 = gauss(f_4);
26 disp(abs(I_4 - Ig_4) < eps)

Eseguendo lo script risulta che si ha esattezza fino all’ordine 3, come previsto

2.5 Esercizio 5
L’esercizio 5 richiede di fornire degli esempi di integrali in cui la funzione integranda non
soddisfi le ipotesi di convergenza ottimale per i metodi implementati nell’esercizio 1.

Le condizioni di convergenza ottimale ci sono garantite da alcune stime teoriche sull’errore.
Queste stime, tuttavia, richiedono come ipotesi una certa regolarità della funzione integranda:
in particolare la funzione deve essere C2 nel caso delle formule del punto medio e del trapezio

17

e di classe C4 nel caso della formula di Cavalieri-Simpson. Possiamo, quindi, cercare come
esempi delle funzioni che non possiedano la regolarità richiesta e verificare che l’ordine di
convergenza dei metodi è effettivamente più basso.

Il primo esempio è la funzione f(x) = x
7
3 , che è C2, ma non C3. Ci possiamo, quindi,

aspettare che i metodi del punto medio e del trapezio abbiano sempre ordine di convergenza
2, mentre il metodo di Cavalieri-Simpson abbia ordine minore di 4.

Lo verifichiamo graficamente sfruttando lo script dell’esercizio 2 opportunamente modifi-
cato.

Implementazione del primo esempio:

1 f = @(x)(x^(7/3));
2 a = -1;
3 b = 1;
4
5 I = 3/10 - (3/10) *(-1) ^(10/3);
6
7
8 % pto medio
9
10 h = zeros(5, 1);
11 E_pm = zeros(5, 1);
12 i = 1;
13 for esp =4:8
14 m = 2^esp;
15 h(i) = (b-a)/m;
16 E_pm(i) = abs(pto_medio(f, a, b, m)-I);
17 i = i+1;
18 end
19
20 % trapezio
21
22 h = zeros(5, 1);
23 E_t = zeros(5, 1);
24 i = 1;
25 for esp =4:8
26 m = 2^esp;
27 h(i) = (b-a)/m;
28 E_t(i) = abs(trapezio(f, a, b, m)-I);
29 i = i+1;
30 end
31
32 % Cavalieri
33
34 h = zeros(5, 1);
35 E_c = zeros(5, 1);
36 i = 1;
37 for esp =4:8
38 m = 2^esp;
39 h(i) = (b-a)/m;
40 E_c(i) = abs(Cavalieri(f, a, b, m)-I);
41 i = i+1;
42 end
43

18

44 semilogy(h, E_pm , h, E_t , h, E_c , h, h.^2, h, (h/2).^3, h, (h
/2) .^4)

45 legend(’Pto␣medio’, ’Trapezio ’, ’Cavalieri -Simpson ’, ’y␣=␣h^2’,
’y␣=␣h^4’, ’Location ’, ’Southeast ’)

46 title(’Errore␣di␣integrazione ’)
47 xlabel(’h’)
48 ylabel(’Errore ’)

Il grafico rispecchia le nostre previsioni. Infatti, il metodo del punto medio e il metodo
del trapezio mantengono ordine di convergenza 2, mentre il metodo di Cavalieri-Simpson ha
ordine di convergenza 3, quindi minore del 4 che avrebbe in condizioni di regolarità.

Portiamo anche un secondo esempio di funzione che sia C1, ma non C2. In questo
caso una funzione da prendere può essere f(x) = x

1
3 . Ci aspettiamo che nessuno dei metodi

implementati mantenga lo stesso ordine di convergenza che avrebbe in condizioni di regolarità.

Implementazione del secondo esempio:

1 f = @(x)(x^(1/3));
2 a = -1;
3 b = 1;
4
5 I = 3/4 - 3*(-1) ^(4/3) /4;
6
7
8 % pto medio
9
10 h = zeros(5, 1);
11 E_pm = zeros(5, 1);
12 i = 1;
13 for esp =4:8
14 m = 2^esp;
15 h(i) = (b-a)/m;
16 E_pm(i) = abs(pto_medio(f, a, b, m)-I);
17 i = i+1;
18 end
19

19

20 % trapezio
21
22 h = zeros(5, 1);
23 E_t = zeros(5, 1);
24 i = 1;
25 for esp =4:8
26 m = 2^esp;
27 h(i) = (b-a)/m;
28 E_t(i) = abs(trapezio(f, a, b, m)-I);
29 i = i+1;
30 end
31
32 % Cavalieri
33
34 h = zeros(5, 1);
35 E_c = zeros(5, 1);
36 i = 1;
37 for esp =4:8
38 m = 2^esp;
39 h(i) = (b-a)/m;
40 E_c(i) = abs(Cavalieri(f, a, b, m)-I);
41 i = i+1;
42 end
43
44 semilogy(h, E_pm , h, E_t , h, E_c , h, h, h, (h/2).^2, h, (h/2)

.^4)
45 legend(’Pto␣medio’, ’Trapezio ’, ’Cavalieri -Simpson ’, ’y␣=␣h’, ’

y␣=␣h^2’, ’y␣=␣h^4’, ’Location ’, ’Southeast ’)
46 title(’Errore␣di␣integrazione ’)
47 xlabel(’h’)
48 ylabel(’Errore ’)

Il grafico dell’errore del metodo del punto medio si sovrappone con quello di Cavalieri-
Simpson risultando poco visibile.

20

Notiamo che effettivamente l’ordine di convergenza di tutti i metodi implementati è uno,
quindi in tutti i casi è minore dell’ordine che si avrebbe in caso di regolarità, che è 2 per i
metodi del punto medio e del trapezio e 4 per il metodo di Cavalieri-Simpson.

21

