

Simulated Annealing

A Montecarlo Algorithm for Non-convex Optimization

Gianluca Covini

University of Pavia

January 22, 2024

Indice

1 Problem

2 Simulated Annealing

3 Results

General setting

The problem we want to solve is a minimization problem:

Optimization Problem

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & x \in \mathcal{X} \end{aligned}$$

where $f : \mathbb{R}^p \rightarrow \mathbb{R}$ and $\mathcal{X} \subseteq \mathbb{R}^p$.

General setting

The problem we want to solve is a minimization problem:

Optimization Problem

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & x \in \mathcal{X} \end{aligned}$$

where $f : \mathbb{R}^p \rightarrow \mathbb{R}$ and $\mathcal{X} \subseteq \mathbb{R}^p$.

In general, we need to approximate the solution whenever the function f is complex and the global minimum is difficult to find analitically.

Non-convex problems

Many algorithms struggle when the function has more than one local minimum, i.e. when the function is not convex.

1D Ackley's function

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = -ae^{-b\sqrt{x^2}} - e^{\cos(cx)} + a + e$$

where we chose as parameters $a = 15$, $b = 0.1$ and $c = 2\pi$.

Non-convex problems

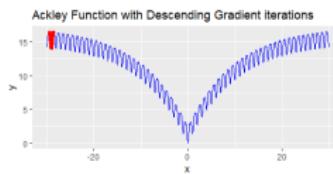
Many algorithms struggle when the function has more than one local minimum, i.e. when the function is not convex.

1D Ackley's function

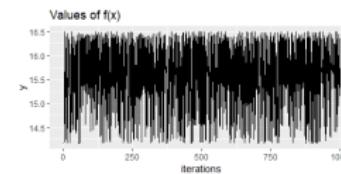
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = -ae^{-b\sqrt{x^2}} - e^{\cos(cx)} + a + e$$

where we chose as parameters $a = 15$, $b = 0.1$ and $c = 2\pi$.



(a) Iterations GD



(b) Values plot GD

Non-convex problems

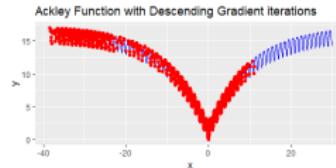
Many algorithms struggle when the function has more than one local minimum, i.e. when the function is not convex.

1D Ackley's function

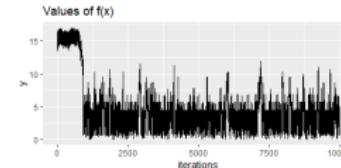
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = -ae^{-b\sqrt{x^2}} - e^{\cos(cx)} + a + e$$

where we chose as parameters $a = 15$, $b = 0.1$ and $c = 2\pi$.



(a) Iterations GD -
Long Step



(b) Values plot GD -
Long Step

Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome the problem: the algorithm takes inspiration from the process of annealing of materials.

- f : internal energy of the system
- x : system configuration.

Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome the problem: the algorithm takes inspiration from the process of annealing of materials.

- f : internal energy of the system
- x : system configuration.

- The algorithm then simulates the process of **heating** of the material: in this way the particles move from initial equilibrium state (that could be a local minimum);

Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome the problem: the algorithm takes inspiration from the process of annealing of materials.

- f : internal energy of the system
- x : system configuration.

- The algorithm then simulates the process of **heating** of the material: in this way the particles move from initial equilibrium state (that could be a local minimum);
- The following slow **cooling** process let, then, the particles to set in a lower energy state (that should be the global minimum of the energy function).

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;
- 3: If the value of $y' = f(x')$ is lower than the previous value $y = f(x)$ we accept the new point ($x = x'$), otherwise we accept the new point with probability $e^{-(y' - y)/t}$;

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;
- 3: If the value of $y' = f(x')$ is lower than the previous value $y = f(x)$ we accept the new point ($x = x'$), otherwise we accept the new point with probability $e^{-(y'-y)/t}$;
- 4: We save the best solution so far;

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;
- 3: If the value of $y' = f(x')$ is lower than the previous value $y = f(x)$ we accept the new point ($x = x'$), otherwise we accept the new point with probability $e^{-(y'-y)/t}$;
- 4: We save the best solution so far;
- 5: Steps 2 – 4 are repeated for a fixed number of iterations (or until an equilibrium is reached);

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;
- 3: If the value of $y' = f(x')$ is lower than the previous value $y = f(x)$ we accept the new point ($x = x'$), otherwise we accept the new point with probability $e^{-(y'-y)/t}$;
- 4: We save the best solution so far;
- 5: Steps 2 – 4 are repeated for a fixed number of iterations (or until an equilibrium is reached);
- 6: Temperature t is decreased following an annealing schedule;

Algorithm

- 1: We choose an initial point $x = x_{in}$ and an initial high value of temperature $t = t_{in}$;
- 2: We generate randomly a new point x' ;
- 3: If the value of $y' = f(x')$ is lower than the previous value $y = f(x)$ we accept the new point ($x = x'$), otherwise we accept the new point with probability $e^{-(y'-y)/t}$;
- 4: We save the best solution so far;
- 5: Steps 2 – 4 are repeated for a fixed number of iterations (or until an equilibrium is reached);
- 6: Temperature t is decreased following an annealing schedule;
- 7: Steps 2 – 6 are repeated until $f(x)$ no longer sensibly decrease.

```
1  while (i < maxit & abs(delta_y) > eps) {  
2      x_[i] = x[i] + rnorm(1, mean, sd)  
3      y_[i] = f(x_[i])  
4  
5      delta_y = y_[i] - y[i]  
6  
7      if (delta_y <= 0 | runif(1) < exp(-delta_y/t[i])){  
8          x[i+1] = x_[i]  
9          y[i+1] = y_[i]  
10     }  
11     else {  
12         x[i+1] = x[i]  
13         y[i+1] = y[i]  
14     }  
15  
16     if (y_[i] < y_best[i]) {  
17         x_best[i+1] = x_[i]  
18         y_best[i+1] = y_[i]  
19     }  
20     else {  
21         x_best[i+1] = x_best[i]  
22         y_best[i+1] = y_best[i]  
23     }  
24  
25     if (i %% N == 0){  
26         t[i+1] = a_s(t_in, t[i], i)  
27     }  
28     else{  
29         t[i+1] = t[i]  
30     }  
31     i = i+1  
32 }  
33 }
```

Input

Our `simulated_annealing` routine takes as input:

Input

- `f`: the 1D Ackley's function shown at the beginning;
- `a_s`: the annealing schedule (when not specified we take logarithmic annealing);
- `x_in`: the initial guess x_{in} (we took `x_in = -29`);
- `mean`, `sd`: the parameters of the gaussian that generates the new samples (if not specified `mean = 0` and `sd = 1`);
- `t_in`: the initial temperature (if not specified `t_in = 1`);
- `maxit`: the maximum number of iterations, set to 10^5 ;
- `eps`: the solution tolerance, set to 10^{-5} ;
- `N`: the number of iterations before cooling, set to 10.

For the sake of reproducibility we set a seed of 2111.

Annealing schedule

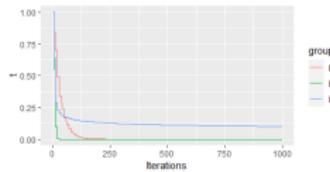
Annealing schedules

$$t(k+1) = \frac{\ln(2)}{\ln(k+1)} t_{in} \quad t(k+1) = \gamma t(k) \quad t(k+1) = \frac{1}{k+1}$$

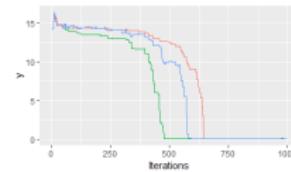
Annealing schedule

Annealing schedules

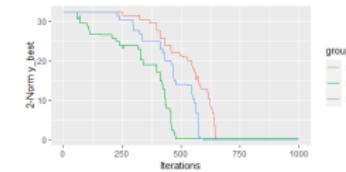
$$t(k+1) = \frac{\ln(2)}{\ln(k+1)} t_{in} \quad t(k+1) = \gamma t(k) \quad t(k+1) = \frac{1}{k+1}$$



(a) Temperature over iterations

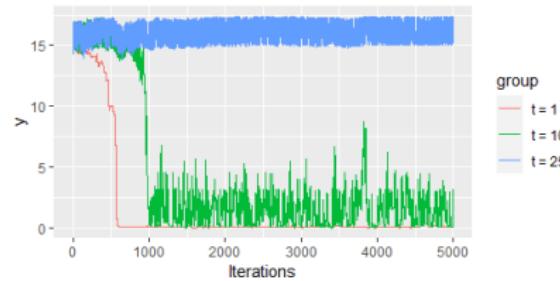
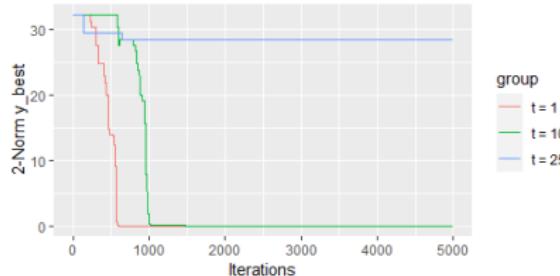


(b) Value of f over iterations



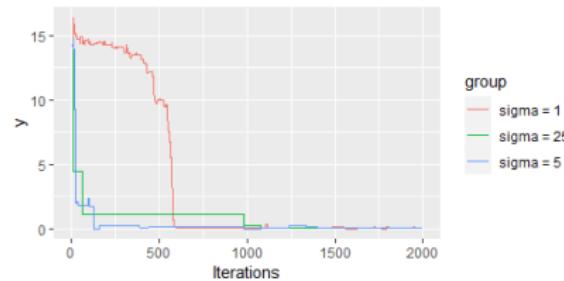
(c) Error on iterations

Initial conditions

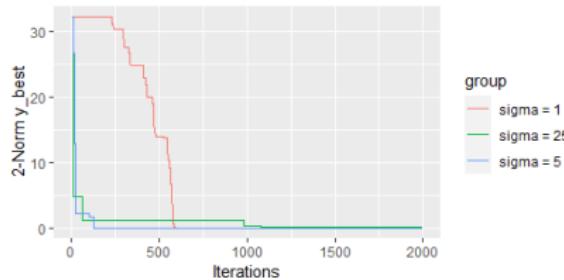
(a) Value of f over iterations

(b) Error on iterations

Random parameters



(a) Value of f over iterations



(b) Error on iterations