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General setting

The problem we want to solve is a minimization problem:
Optimization Problem

min f(x)

st. xe kX

where f : RP — R and X C RP.
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Optimization Problem

min f(x)
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where f : RP — R and X C RP.

In general, we need to approximate the solution whenever the

function f is complex and the global minimum is difficult to find
analitically.
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Non-convex problems

Many algorithms struggle when the function has more than one
local minimum, i.e. when the function is not convex.

1D Ackley’s function

f:R— R
f(X) — _ae—b\/)? _ ecos(cx) +ate

where we chose as parameters a = 15, b= 0.1 and ¢ = 27.
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Many algorithms struggle when the function has more than one
local minimum, i.e. when the function is not convex.

1D Ackley’s function

f:R—R
f(x) = e bV _geos(ed) |54 e

where we chose as parameters a = 15, b = 0.1 and ¢ = 27.
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Non-convex problems

Many algorithms struggle when the function has more than one
local minimum, i.e. when the function is not convex.

1D Ackley’s function

f:R— R
f(X) — _ae—b\/)? _ ecos(cx) +ate

where we chose as parameters a = 15, b = 0.1 and ¢ = 27.

‘Ackley Function with Descending Gradient iterations Values of f(x)
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Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome
the problem: the algorithm takes inspiration from the process of
annealing of materials.

@ f: internal energy of the system
@ x: system configuration. J
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Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome
the problem: the algorithm takes inspiration from the process of
annealing of materials.

@ f: internal energy of the system
@ x: system configuration. J

@ The algorithm then simulates the process of heating of the
material: in this way the particles move from initial
equilibrium state (that could be a local minimum);

@ The following slow cooling process let, then, the particles to
set in a lower energy state (that should be the global
minimum of the energy function).
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Algorithm

1: We choose an initial point x = x;, and an initial high value of
temperature t = tj,;
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Algorithm

1: We choose an initial point x = x;, and an initial high value of
temperature t = tj,;

2: We generate randomly a new point x’;

3: If the value of y’ = f(x’) is lower than the previous value
y = f(x) we accept the new point (x = x’), otherwise we
accept the new point with probability e~ (/' =¥)/t.

4: We save the best solution so far;

5. Steps 2 — 4 are repeated for a fixed number of iterations (or
until an equilibrium is reached);

6: Temperature t is decreased following an annealing schedule;

7: Steps 2 — 6 are repeated until f(x) no longer sensibly decrease.
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while (i < maxit & abs(delta_y) > eps) {
x_[i] = x[i] + rnorm(1, mean, sd)
y_[i]l = £(x_[i])
delta_y = y_[i]l - y[il

if (delta_y <= 0 | runif (1) < exp(-delta_y/t[il)){

x[i+1] = x_[i]
yli+1] = y_[il
}
else {
x[i+1] = x[i]
yli+1] = y[i]
}
if (y_[il < y_best[il){
x_best[i+1] = x_[il]
y_best[i+1] = y_[i]
}
else {
x_best[i+1] = x_best[i]
y_best[i+1] = y_best[il
if (i %% N == 0){
t[i+1] = a_s(t_in, t[i], i)
}
else{

t[i+1] = t[il
}
i

= i+l

Listing: Simulated Annealing Loop
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Our simulated_annealing routine takes as input:

e f: the 1D Ackley’'s function shown at the beggining;

@ a_s: the annealing schedule (when not specified we take
logarithmic annealing);

@ x_in: the initial guess xj, (we took x_in = -29);

mean, sd: the parameters of the gaussian that generates the
new samples (if not specified mean = 0 and sd = 1);

t_in: the initial temperature (if not specified t_in = 1);

maxit: the maximum number of iterations, set to 10°;

°
°
@ eps: the solution tolerance, set to 103;
°

N: the number of iterations before cooling, set to 10.

For the sake of reproducibility we set a seed of 2111.
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Initial conditions
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Random parameters
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