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General setting

The problem we want to solve is a minimization problem:

Optimization Problem

min
x

f (x)

s.t. x ∈ X

where f : Rp −→ R and X ⊆ Rp.

In general, we need to approximate the solution whenever the
function f is complex and the global minimum is difficult to find
analitically.
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Non-convex problems

Many algorithms struggle when the function has more than one
local minimum, i.e. when the function is not convex.

1D Ackley’s function

f : R −→ R

f (x) = −ae−b
√
x2 − ecos(cx) + a+ e

where we chose as parameters a = 15, b = 0.1 and c = 2π.
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Simulated Annealing

Simulated Annealing Algorithm uses randomness to overcome
the problem: the algorithm takes inspiration from the process of
annealing of materials.

f : internal energy of the system

x : system configuration.

The algorithm then simulates the process of heating of the
material: in this way the particles move from initial
equilibrium state (that could be a local minimum);

The following slow cooling process let, then, the particles to
set in a lower energy state (that should be the global
minimum of the energy function).
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Algorithm

1: We choose an initial point x = xin and an initial high value of
temperature t = tin;

2: We generate randomly a new point x ′;
3: If the value of y ′ = f (x ′) is lower than the previous value

y = f (x) we accept the new point (x = x ′), otherwise we
accept the new point with probability e−(y ′−y)/t ;

4: We save the best solution so far;
5: Steps 2− 4 are repeated for a fixed number of iterations (or

until an equilibrium is reached);
6: Temperature t is decreased following an annealing schedule;
7: Steps 2− 6 are repeated until f (x) no longer sensibly decrease.
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1 while (i < maxit & abs(delta_y) > eps) {
2 x_[i] = x[i] + rnorm(1, mean , sd)
3 y_[i] = f(x_[i])
4
5 delta_y = y_[i] - y[i]
6
7 if (delta_y <= 0 | runif (1) < exp(-delta_y/t[i])){
8 x[i+1] = x_[i]
9 y[i+1] = y_[i]

10 }
11 else {
12 x[i+1] = x[i]
13 y[i+1] = y[i]
14 }
15
16 if (y_[i] < y_best[i]){
17 x_best[i+1] = x_[i]
18 y_best[i+1] = y_[i]
19 }
20 else {
21 x_best[i+1] = x_best[i]
22 y_best[i+1] = y_best[i]
23 }
24
25 if (i %% N == 0){
26 t[i+1] = a_s(t_in, t[i], i)
27 }
28 else{
29 t[i+1] = t[i]
30 }
31 i = i+1
32 }
33

Listing: Simulated Annealing Loop
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Input

Our simulated annealing routine takes as input:

Input

f: the 1D Ackley’s function shown at the beggining;

a s: the annealing schedule (when not specified we take
logarithmic annealing);

x in: the initial guess xin (we took x in = -29);

mean, sd: the parameters of the gaussian that generates the
new samples (if not specified mean = 0 and sd = 1);

t in: the initial temperature (if not specified t in = 1);

maxit: the maximum number of iterations, set to 105;

eps: the solution tolerance, set to 10−5;

N: the number of iterations before cooling, set to 10.

For the sake of reproducibility we set a seed of 2111.
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Annealing schedule

Annealing schedules

t(k + 1) =
ln(2)

ln(k + 1)
tin t(k + 1) = γt(k) t(k + 1) =

1

k + 1

(a) Temperature over
iterations

(b) Value of f over
iterations

(c) Error on iterations
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Initial conditions

(a) Value of f over iterations

(b) Error on iterations
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Random parameters

(a) Value of f over iterations

(b) Error on iterations
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