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Mean Field Theory

Mean Field Theory
Study the collective behavior of multi-agent systems.

In particular, state evolution of particle-like systems with social
interaction forces.

Applications

- Particles with position and velocity which interact through
fundamental forces;

- animal collective behavior: emergence of flocks;

- opinion dynamics: emergence of consensus.

Goal

Study the emergence of global behavior under the ,
i.e. for the number of particles/individuals N — ooc.
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Can a policy-maker intervene towards pattern formation?
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- The first term gives cost to the discrepancy to the flocking;

- the second term entails sparsity of the control.
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Optimization Problem

We represent the system as uy(t) = % ZL S0x,(6),vi (), With
(%, vi) = (xi(t), vi(t)) € R%.

General Finite-dimensional Problem
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Optimization Problem

General Finite-dimensional Problem

i /O /RM(L(X, v, 1) + B (t, X, V) dan(x, V)t

fnEFe

S.t .
Vi = (H* pn)(Xi, vi) + fu(t, X, vi)  te[0,T]

Admissible Controls
We can imagine F; > f such as
< f:10,T] = W'P(Q C R, RY) € LY;
- |f(t,0)] + Lip(f(t,-),RY) < £(t) € L9 forae. t € [0,T].

Note: (Under assumptions on L, 1, H) the problem always has a
solution.



Questions

What happens under the mean-field limit (N — 00)?
In particular,
Which pattern does the system reach? uy — proo?

Which is the right control for N — c0? fy — foo?

What is the relation between o, and fo.?
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pn(t) € Py(R?) = {m probability measure with [p., [x|dm(x) < co}.
Which topology on P;(R?)?

Wasserstein Distance

Wilpor)i=_min [ 1(6:9) = (. 0)ldv((65) (. )

YEN (1,v)

where ['(p,v) == {y € P;(R¥ x R¥) : 77;;7 = M,WLV =v}

Idea
Find oo such that

Wi (pn(t), poo(t 0
(an(0), o) = 0 = /de |x|duN(x)%/RZd X d(x)
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Limit for fy

fv € L9((0,T), W"P(Q € R¥ RY))
Which notion of convergence?

Weak Convergence
fv = foo if @nd only if

/T<¢(t)vf/\/(tv ) _foo(tv )>dt -0 V(b € LQ/((O’ T)’ H_LP(RZd?Rd))

(We actually consider only ¢ with compact support in Q.)
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Infinite-Dimensional Problem

Which is the relation between ., and f., we are looking for?

Main Result

(Under assumptions of continuity of L and lipschitzianity on 1 and
H) the (un, fv) solution of the finite-dimensional problem converge
up to a subsequence to (pieo, foo ), SOlUtions of the

:
min /O /R (L0 Vs o) 6 (Foe () o (, V)
St == 4+ V- Vitoo = V- [(H* too + foo)lhoo]  VE € [0, T]

Note: u is @ weak solution of the PDE in the sense of distributions.



Comparison of the Problems

Finite-Dimensional Problem

T
min /O/RM(L(X,V,MN)+1/J(fN(t,X,v))de(x,v)dt

fnEFe

t X,':V,‘ iZT,...,N,
S-' .
Vi = (H*,UN)(XHVI) +fN(t7XI'7VI') te [077—]

Infinite-Dimensional Problem

T .
min /O/RM(L(X,V,,%O)+w(fm(t,x,v))duoo(x,v)dt

foce]:Z
Olhoo

St 52 V- Viptoo = V- [(Hx oo + fooJice] 1€ [0,T]
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Sketch of the Proof

The proof develops the limit for uy and the one for fy together.
How to find pi0o

- As solution of the ODE system, uy has regularity properties; in
particular, it is equi-bounded and equi-Lipschitz.

- We can apply Ascoli-Arzela theorem, and say that, up to a
subsequence, 3™ such that puy — ™ with respect to Wh.
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The proof develops the limit for uy and the one for fy together.
How to find pi0o

- As solution of the ODE system, uy has regularity properties; in
particular, it is equi-bounded and equi-Lipschitz.

- We can apply Ascoli-Arzela theorem, and say that, up to a
subsequence, 3™ such that puy — ™ with respect to Wh.

How to find f

- The space of admissible controls F, can be shown to be weakly
compact.

- Therefore, 3fim ¢ F, such that, up to a subsequence, fy — flim,



Sketch of the Proof

Solution of the Infinite-Dimensional PDE

- It can be shown that x(!™M solves the infinite-dimensional PDE
by
- showing that each uy is weak solution of the PDE in the sense of
distributions, in particular V¢ € C°,

[, €@ - [ ctndm@y) =

— [ (T60) v+ Dl ) - (o s @) v+
94000l % V) ()06, )

- and then computing the limit for N — oo.



Sketch of the Proof

Optimality of f{im

Lastly, one has to show that fi™ is optimal with respect to the
infinite-dimensional problem. This limit of optimization problems
is called . In particular, given g € F,, we have that

/ T [ v ) e x, ), e
<||m|nf/ / (L(X, vy o) + 0 (fn(t, X, v))dun(t, X, v)dt
<liminf / L0V Gighn) + (g x ) x i

.
— /0 /R zd(L(x, V, 1ig) 4+ (g(t, x, v))dug(t, X, v)dt
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Sketch of the Proof

Optimality of f

[0 4 g 5 )9t 5,
<I|m|nf/ / (LOGV, 1) + B(Far(E, X, V) dpan (8, X, V)it
it [ [ 00w i) + 06t 5 v
- | T | (L) + (gt x )l x V)l

- The first inequality is consequence of properties of
semicontinuity of the controls and dominated convergence;

- the second inequality is due to optimality of fy;
- the last equality is due to dominated convergence.



Sketch of the Proof

Conclusion

We can therefore conclude that 3(ueo, foo) @nd, in particular,
proo 1= uM and foo = fIM).
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Take-home

(Under regularity assumptions) an optimal control problem with
“mean-field” ODE contraints of the form we defined converges
weakly and up to a subsequence under mean-field limit to an
optimal control problem with McKean-Vlasov PDE contstraint.
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Other Observations
We had no time to focus on:

- The fact that the finite-dimensional problem (and therefore the
infinite-dimensional) has a solution for every admissible control;

- the assumptions on the functions describing the system (which
may be considered too strong, in particular the linear bound on
interaction term H);

- the fact that the convergence is only weak and up to a
subsequence.
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neither numerical ways to approximate it.
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Consequences
The results can be used to prove consistency to a wide class of
problems of practical interest under the mean-field limit, for

example the flocking emergence in Cucker-Smale model we cited at
the beginning.

Thank you for your attention!
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