

Mean-Field Optimal Control

M. Fornasier, F. Solombrino, ESAIM: COCV, 2013

Gianluca Covini

Presentation for the exam of *Statistical Mechanics and Methods for Complex Systems*

Table of contents

1. Introduction
2. Finite-Dimensional Problem
3. Mean-Field Limit
4. Conclusion

Introduction

Mean Field Theory

Mean Field Theory

Study the collective behavior of multi-agent systems.

In particular, *state evolution* of particle-like systems with social interaction forces.

Mean Field Theory

Mean Field Theory

Study the collective behavior of multi-agent systems.

In particular, *state evolution* of particle-like systems with social interaction forces.

Applications

- Particles with position and velocity which interact through fundamental forces;

Mean Field Theory

Mean Field Theory

Study the collective behavior of multi-agent systems.

In particular, *state evolution* of particle-like systems with social interaction forces.

Applications

- Particles with position and velocity which interact through fundamental forces;
- animal collective behavior: emergence of flocks;

Mean Field Theory

Mean Field Theory

Study the collective behavior of multi-agent systems.

In particular, *state evolution* of particle-like systems with social interaction forces.

Applications

- Particles with position and velocity which interact through fundamental forces;
- animal collective behavior: emergence of flocks;
- opinion dynamics: emergence of consensus.

Mean Field Theory

Mean Field Theory

Study the collective behavior of multi-agent systems.

In particular, *state evolution* of particle-like systems with social interaction forces.

Applications

- Particles with position and velocity which interact through fundamental forces;
- animal collective behavior: emergence of flocks;
- opinion dynamics: emergence of consensus.

Goal

Study the emergence of global behavior under the **mean-field limit**, i.e. for the number of particles/individuals $N \rightarrow \infty$.

An example

Cucker-Smale Model

The CS model deals with **flocking (or consensus) emergence**

$$(CS) \quad \begin{cases} \dot{x}_i &= v_i \\ \dot{v}_i &= \frac{1}{N} \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) \end{cases} \quad i = 1, \dots, N, \quad t \in [0, T]$$

An example

Cucker-Smale Model

The CS model deals with **flocking (or consensus) emergence**

$$(CS) \quad \begin{cases} \dot{x}_i &= v_i \\ \dot{v}_i &= \frac{1}{N} \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) \end{cases} \quad i = 1, \dots, N, \quad t \in [0, T]$$

Question

Can a policy-maker intervene towards pattern formation?

CS with control

Cucker-Smale Model with Control

Given $f_N : [0, T] \times \mathbb{R}^{2d} \rightarrow \mathbb{R}^d$

$$(CS) \quad \begin{cases} \dot{x}_i = v_i \\ \dot{v}_i = \frac{1}{N} \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) + f_N(t, x_i, v_i) \end{cases} \quad \begin{matrix} i = 1, \dots, N, \\ t \in [0, T] \end{matrix}$$

CS with control

Cucker-Smale Model with Control

Given $f_N : [0, T] \times \mathbb{R}^{2d} \rightarrow \mathbb{R}^d$

$$(CS) \quad \begin{cases} \dot{x}_i = v_i \\ \dot{v}_i = \frac{1}{N} \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) + f_N(t, x_i, v_i) \end{cases} \quad \begin{matrix} i = 1, \dots, N, \\ t \in [0, T] \end{matrix}$$

Control Cost

$$\int_0^T \frac{1}{N} \sum_{i=1}^N \left(|v_i - \frac{1}{N} \sum_{j=1}^N v_j|^2 + \gamma |f_N(t, x_i, v_i)| \right) dt, \quad \gamma > 0$$

- The first term gives cost to the discrepancy to the flocking;
- the second term entails sparsity of the control.

Finite-Dimensional Problem

Optimization Problem

We represent the system as $\mu_N(t) = \frac{1}{N} \sum_{i=1}^N \delta_{(x_i(t), v_i(t))}$, with $(x_i, v_i) = (x_i(t), v_i(t)) \in \mathbb{R}^{2d}$.

General Finite-dimensional Problem

$$\begin{aligned} \min_{f_N \in \mathcal{F}_\ell} \quad & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_N) + \psi(f_N(t, x, v))) d\mu_N(x, v) dt \\ \text{s.t.} \quad & \begin{cases} \dot{x}_i = v_i & i = 1, \dots, N, \\ \dot{v}_i = (H \star \mu_N)(x_i, v_i) + f_N(t, x_i, v_i) & t \in [0, T] \end{cases} \end{aligned}$$

$$\text{where } (H \star \mu)(x, v) = \int_{\mathbb{R}^{2d}} H((x, v) - (\xi, \nu)) d\mu(\xi, \nu)$$

$$\text{if } \mu = \mu_N, \text{ then } = \frac{1}{N} \sum_{j=1}^N H((x, v) - (x_j, v_j))$$

Optimization Problem

General Finite-dimensional Problem

$$\begin{aligned} \min_{f_N \in \mathcal{F}_\ell} \quad & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_N) + \psi(f_N(t, x, v))) d\mu_N(x, v) dt \\ \text{s.t.} \quad & \begin{cases} \dot{x}_i = v_i & i = 1, \dots, N, \\ \dot{v}_i = (H \star \mu_N)(x_i, v_i) + f_N(t, x_i, v_i) & t \in [0, T] \end{cases} \end{aligned}$$

Admissible Controls

We can imagine $\mathcal{F}_\ell \ni f$ such as

- $f: [0, T] \rightarrow W^{1,p}(\Omega \subseteq \mathbb{R}^{2d}, \mathbb{R}^d) \in L^q$;
- $|f(t, 0)| + \text{Lip}(f(t, \cdot), \mathbb{R}^d) \leq \ell(t) \in L^q$ for a.e. $t \in [0, T]$.

Note: (Under assumptions on L, ψ, H) the problem always has a solution.

Questions

Question

What happens under the mean-field limit ($N \rightarrow \infty$)?

In particular,

1. Which pattern does the system reach? $\mu_N \rightarrow \mu_\infty$?
2. Which is the right control for $N \rightarrow \infty$? $f_N \rightarrow f_\infty$?
3. What is the relation between μ_∞ and f_∞ ?

Mean-Field Limit

Question

$\mu_N(t) \in \mathcal{P}_1(\mathbb{R}^{2d}) = \{\pi \text{ probability measure with } \int_{\mathbb{R}^{2d}} |x| d\pi(x) < \infty\}.$

Which topology on $\mathcal{P}_1(\mathbb{R}^{2d})$?

Limit for μ_N

Question

$\mu_N(t) \in \mathcal{P}_1(\mathbb{R}^{2d}) = \{\pi \text{ probability measure with } \int_{\mathbb{R}^{2d}} |x| d\pi(x) < \infty\}.$

Which topology on $\mathcal{P}_1(\mathbb{R}^{2d})$?

Wasserstein Distance

$$\mathcal{W}_1(\mu, \nu) := \min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^{2d}} |(\xi, s) - (\eta, u)| d\gamma((\xi, s), (\eta, u))$$

where $\Gamma(\mu, \nu) := \{\gamma \in \mathcal{P}_1(\mathbb{R}^{2d} \times \mathbb{R}^{2d}) : \pi_\#^X \gamma = \mu, \pi_\#^Y \gamma = \nu\}.$

Limit for μ_N

Question

$\mu_N(t) \in \mathcal{P}_1(\mathbb{R}^{2d}) = \{\pi \text{ probability measure with } \int_{\mathbb{R}^{2d}} |x|d\pi(x) < \infty\}.$

Which topology on $\mathcal{P}_1(\mathbb{R}^{2d})$?

Wasserstein Distance

$$\mathcal{W}_1(\mu, \nu) := \min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^{2d}} |(\xi, s) - (\eta, u)| d\gamma((\xi, s), (\eta, u))$$

where $\Gamma(\mu, \nu) := \{\gamma \in \mathcal{P}_1(\mathbb{R}^{2d} \times \mathbb{R}^{2d}) : \pi_\#^X \gamma = \mu, \pi_\#^Y \gamma = \nu\}.$

Idea

Find μ_∞ such that

$$\begin{aligned} \mu_N(t) &\rightharpoonup \mu_\infty(t) \\ \mathcal{W}_1(\mu_N(t), \mu_\infty(t)) \rightarrow 0 &\iff \int_{\mathbb{R}^{2d}} |x| d\mu_N(x) \rightarrow \int_{\mathbb{R}^{2d}} |x| d\mu(x) \end{aligned}$$

Question

$$f_N \in L^q((0, T), W^{1,p}(\Omega \subseteq \mathbb{R}^{2d}, \mathbb{R}^d))$$

Which notion of convergence?

Question

$$f_N \in L^q((0, T), W^{1,p}(\Omega \subseteq \mathbb{R}^{2d}, \mathbb{R}^d))$$

Which notion of convergence?

Weak Convergence

$f_N \rightharpoonup f_\infty$ if and only if

$$\int_0^T \langle \phi(t), f_N(t, \cdot) - f_\infty(t, \cdot) \rangle dt \rightarrow 0 \quad \forall \phi \in L^{q'}((0, T), H^{-1,p}(\mathbb{R}^{2d}, \mathbb{R}^d))$$

(We actually consider only ϕ with compact support in Ω .)

Infinite-Dimensional Problem

Question

Which is the relation between μ_∞ and f_∞ we are looking for?

Infinite-Dimensional Problem

Question

Which is the relation between μ_∞ and f_∞ we are looking for?

Main Result

(Under assumptions of continuity of L and lipschitzianity on ψ and H) the (μ_N, f_N) solution of the finite-dimensional problem converge up to a subsequence to (μ_∞, f_∞) , solutions of the infinite-dimensional problem

$$\begin{aligned} \min_{f_\infty \in \mathcal{F}_\ell} \quad & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_\infty) + \psi(f_\infty(t, x, v))) d\mu_\infty(x, v) dt \\ \text{s.t.} \quad & \frac{\partial \mu_\infty}{\partial t} + v \cdot \nabla_x \mu_\infty = \nabla_v \cdot [(H \star \mu_\infty + f_\infty) \mu_\infty] \quad \forall t \in [0, T] \end{aligned}$$

Note: μ_∞ is a weak solution of the PDE in the sense of distributions.

Comparison of the Problems

Finite-Dimensional Problem

$$\begin{aligned} \min_{f_N \in \mathcal{F}_\ell} \quad & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_N) + \psi(f_N(t, x, v))) d\mu_N(x, v) dt \\ \text{s.t.} \quad & \begin{cases} \dot{x}_i = v_i & i = 1, \dots, N, \\ \dot{v}_i = (H \star \mu_N)(x_i, v_i) + f_N(t, x_i, v_i) & t \in [0, T] \end{cases} \end{aligned}$$

Infinite-Dimensional Problem

$$\begin{aligned} \min_{f_\infty \in \mathcal{F}_\ell} \quad & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_\infty) + \psi(f_\infty(t, x, v))) d\mu_\infty(x, v) dt \\ \text{s.t.} \quad & \frac{\partial \mu_\infty}{\partial t} + v \cdot \nabla_x \mu_\infty = \nabla_v \cdot [(H \star \mu_\infty + f_\infty) \mu_\infty] \quad t \in [0, T] \end{aligned}$$

Sketch of the Proof

The proof develops the limit for μ_N and the one for f_N together.

How to find μ_∞

- As solution of the ODE system, μ_N has regularity properties; in particular, it is equi-bounded and equi-Lipschitz.
- We can apply Ascoli-Arzelà theorem, and say that, up to a subsequence, $\exists \mu^{(lim)}$ such that $\mu_N \rightarrow \mu^{(lim)}$ with respect to \mathcal{W}_1 .

Sketch of the Proof

The proof develops the limit for μ_N and the one for f_N together.

How to find μ_∞

- As solution of the ODE system, μ_N has regularity properties; in particular, it is equi-bounded and equi-Lipschitz.
- We can apply Ascoli-Arzelà theorem, and say that, up to a subsequence, $\exists \mu^{(lim)}$ such that $\mu_N \rightarrow \mu^{(lim)}$ with respect to \mathcal{W}_1 .

How to find f_∞

- The space of admissible controls \mathcal{F}_ℓ can be shown to be weakly compact.
- Therefore, $\exists f^{(lim)} \in \mathcal{F}_\ell$ such that, up to a subsequence, $f_N \rightharpoonup f^{(lim)}$.

Solution of the Infinite-Dimensional PDE

- It can be shown that $\mu^{(lim)}$ solves the infinite-dimensional PDE by
 - showing that each μ_N is weak solution of the PDE in the sense of distributions, in particular $\forall \zeta \in C_c^\infty$,

$$\begin{aligned} \int_{\mathbb{R}^{2d}} \zeta(x, v) d\mu_N(t)(x, v) - \int_{\mathbb{R}^{2d}} \zeta(x, v) d\mu_N(0)(x, v) &= \\ &= \int_{\mathbb{R}^{2d}} (\nabla_x \zeta(x, v) \cdot v + \nabla_v \zeta(x, v) \cdot (H \star \mu_N(t))(x, v) + \\ &\quad + \nabla_v \zeta(x, v) \cdot f_N(t, x, v)) d\mu_N(t)(x, v) \end{aligned}$$

- and then computing the limit for $N \rightarrow \infty$.

Sketch of the Proof

Optimality of $f^{(lim)}$

Lastly, one has to show that $f^{(lim)}$ is optimal with respect to the infinite-dimensional problem. This limit of optimization problems is called **Γ -limit**. In particular, given $g \in \mathcal{F}_\ell$, we have that

$$\begin{aligned} & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu^{(lim)}) + \psi(f^{(lim)}(t, x, v))) d\mu^{(lim)}(t, x, v) dt \\ & \leq \liminf_{N \rightarrow \infty} \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_N) + \psi(f_N(t, x, v))) d\mu_N(t, x, v) dt \\ & \leq \liminf_{N \rightarrow \infty} \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, (\mu_g)_N) + \psi(g(t, x, v))) d(\mu_g)_N(t, x, v) dt \\ & = \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_g) + \psi(g(t, x, v))) d\mu_g(t, x, v) dt \end{aligned}$$

Sketch of the Proof

Optimality of f_∞

$$\begin{aligned} & \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu^{(lim)}) + \psi(f^{(lim)}(t, x, v))) d\mu^{(lim)}(t, x, v) dt \\ & \leq \liminf_{N \rightarrow \infty} \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_N) + \psi(f_N(t, x, v))) d\mu_N(t, x, v) dt \\ & \leq \liminf_{N \rightarrow \infty} \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, (\mu_g)_N) + \psi(g(t, x, v))) d(\mu_g)_N(t, x, v) dt \\ & = \int_0^T \int_{\mathbb{R}^{2d}} (L(x, v, \mu_g) + \psi(g(t, x, v))) d\mu_g(t, x, v) dt \end{aligned}$$

- The first inequality is consequence of properties of semicontinuity of the controls and dominated convergence;
- the second inequality is due to optimality of f_N ;
- the last equality is due to dominated convergence.

Sketch of the Proof

Conclusion

We can therefore conclude that $\exists(\mu_\infty, f_\infty)$ and, in particular,
 $\mu_\infty := \mu^{(lim)}$ and $f_\infty := f^{(lim)}$.

Conclusion

Conclusion

Take-home

(Under regularity assumptions) an optimal control problem with “mean-field” ODE constraints of the form we defined converges weakly and up to a subsequence under mean-field limit to an optimal control problem with McKean-Vlasov PDE constraint.

Conclusion

Take-home

(Under regularity assumptions) an optimal control problem with “mean-field” ODE constraints of the form we defined converges weakly and up to a subsequence under mean-field limit to an optimal control problem with McKean-Vlasov PDE constraint.

Other Observations

We had no time to focus on:

- The fact that the finite-dimensional problem (and therefore the infinite-dimensional) has a solution for every admissible control;
- the assumptions on the functions describing the system (which may be considered too strong, in particular the linear bound on interaction term H);
- the fact that the convergence is only weak and up to a subsequence.

Conclusion

Strong and weak point of the paper

- It proves an important existence result;
- it does not provide characterisation of the mean-field control neither numerical ways to approximate it.

Conclusion

Strong and weak point of the paper

- It proves an important existence result;
- it does not provide characterisation of the mean-field control neither numerical ways to approximate it.

Consequences

The results can be used to prove consistency to a wide class of problems of practical interest under the mean-field limit, for example the flocking emergence in Cucker-Smale model we cited at the beginning.

Conclusion

Strong and weak point of the paper

- It proves an important existence result;
- it does not provide characterisation of the mean-field control neither numerical ways to approximate it.

Consequences

The results can be used to prove consistency to a wide class of problems of practical interest under the mean-field limit, for example the flocking emergence in Cucker-Smale model we cited at the beginning.

Thank you for your attention!