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Introduction



Mean Field Theory

Mean Field Theory
Study the collective behavior of multi-agent systems.

In particular, state evolution of particle-like systems with social
interaction forces.

Applications
• Particles with position and velocity which interact through
fundamental forces;

• animal collective behavior: emergence of flocks;
• opinion dynamics: emergence of consensus.

Goal
Study the emergence of global behavior under the mean-field limit,
i.e. for the number of particles/individuals N→ ∞.
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An example

Cucker-Smale Model
The CS model deals with flocking (or consensus) emergence

(CS)
{
ẋi = vi
v̇i = 1

N
∑N

j=1 a(|xj − xi|)(vj − vi)
i = 1, . . . ,N, t ∈ [0, T]

Question
Can a policy-maker intervene towards pattern formation?
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ẋi = vi
v̇i = 1

N
∑N

j=1 a(|xj − xi|)(vj − vi)
i = 1, . . . ,N, t ∈ [0, T]

Question
Can a policy-maker intervene towards pattern formation?

3



CS with control

Cucker-Smale Model with Control
Given fN : [0, T]× R2d → Rd

(CS)


ẋi = vi

v̇i =
1
N

N∑
j=1

a(|xj − xi|)(vj − vi) + fN(t, xi, vi)
i = 1, . . . ,N,
t ∈ [0, T]

Control Cost∫ T

0

1
N

N∑
i=1

(|vi −
1
N

N∑
j=1

vj|2 + γ|fN(t, xi, vi)|)dt, γ > 0

• The first term gives cost to the discrepancy to the flocking;
• the second term entails sparsity of the control.
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Finite-Dimensional Problem



Optimization Problem

We represent the system as µN(t) = 1
N
∑N

i=1 δ(xi(t),vi(t)), with
(xi, vi) = (xi(t), vi(t)) ∈ R2d.

General Finite-dimensional Problem

min
fN∈Fℓ

∫ T

0

∫
R2d

(L(x, v, µN) + ψ(fN(t, x, v))dµN(x, v)dt

s.t.
{
ẋi = vi
v̇i = (H ⋆ µN)(xi, vi) + fN(t, xi, vi)

i = 1, . . . ,N,
t ∈ [0, T]

where (H ⋆ µ)(x, v) =
∫
R2d
H((x, v)− (ξ, ν))dµ(ξ, ν)

if µ = µN, then =
1
N

N∑
j=1

H((x, y)− (xj, vj))
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Optimization Problem

General Finite-dimensional Problem

min
fN∈Fℓ

∫ T

0

∫
R2d

(L(x, v, µN) + ψ(fN(t, x, v))dµN(x, v)dt

s.t.
{
ẋi = vi
v̇i = (H ⋆ µN)(xi, vi) + fN(t, xi, vi)

i = 1, . . . ,N,
t ∈ [0, T]

Admissible Controls
We can imagine Fℓ ∋ f such as

• f : [0, T] → W1,p(Ω ⊆ R2d,Rd) ∈ Lq;
• |f(t, 0)|+ Lip(f(t, ·),Rd) ≤ ℓ(t) ∈ Lq for a.e. t ∈ [0, T].

Note: (Under assumptions on L, ψ,H) the problem always has a
solution.
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Questions

Question
What happens under the mean-field limit (N→ ∞)?

In particular,

1. Which pattern does the system reach? µN → µ∞?

2. Which is the right control for N→ ∞? fN → f∞?

3. What is the relation between µ∞ and f∞?
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Mean-Field Limit



Limit for µN
Question
µN(t) ∈ P1(R2d) = {π probability measure with

∫
R2d |x|dπ(x) <∞}.

Which topology on P1(R2d)?

Wasserstein Distance

W1(µ, ν) := min
γ∈Γ(µ,ν)

∫
R2d

|(ξ, s)− (η,u)|dγ((ξ, s), (η,u))

where Γ(µ, ν) := {γ ∈ P1(R2d × R2d) : πX#γ = µ, πY#γ = ν}.

Idea
Find µ∞ such that

W1(µN(t), µ∞(t)) → 0 ⇐⇒
µN(t)⇀ µ∞(t)∫

R2d
|x|dµN(x) →

∫
R2d

|x|dµ(x)
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Limit for fN

Question

fN ∈ Lq((0, T),W1,p(Ω ⊆ R2d,Rd))

Which notion of convergence?

Weak Convergence
fN ⇀ f∞ if and only if∫ T

0
⟨ϕ(t), fN(t, ·)− f∞(t, ·)⟩dt→ 0 ∀ϕ ∈ Lq

′
((0, T),H−1,p(R2d,Rd))

(We actually consider only ϕ with compact support in Ω.)
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Infinite-Dimensional Problem

Question
Which is the relation between µ∞ and f∞ we are looking for?

Main Result
(Under assumptions of continuity of L and lipschitzianity on ψ and
H) the (µN, fN) solution of the finite-dimensional problem converge
up to a subsequence to (µ∞, f∞), solutions of the
infinite-dimensional problem

min
f∞∈Fℓ

∫ T

0

∫
R2d

(L(x, v, µ∞) + ψ(f∞(t, x, v))dµ∞(x, v)dt

s.t. ∂µ∞

∂t + v · ∇xµ∞ = ∇v · [(H ⋆ µ∞ + f∞)µ∞] ∀t ∈ [0, T]

Note: µ∞ is a weak solution of the PDE in the sense of distributions.
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Comparison of the Problems

Finite-Dimensional Problem

min
fN∈Fℓ

∫ T

0

∫
R2d

(L(x, v, µN) + ψ(fN(t, x, v))dµN(x, v)dt

s.t.
{
ẋi = vi
v̇i = (H ⋆ µN)(xi, vi) + fN(t, xi, vi)

i = 1, . . . ,N,
t ∈ [0, T]

Infinite-Dimensional Problem

min
f∞∈Fℓ

∫ T

0

∫
R2d

(L(x, v, µ∞) + ψ(f∞(t, x, v))dµ∞(x, v)dt

s.t. ∂µ∞

∂t + v · ∇xµ∞ = ∇v · [(H ⋆ µ∞ + f∞)µ∞] t ∈ [0, T]
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Sketch of the Proof

The proof develops the limit for µN and the one for fN together.

How to find µ∞

• As solution of the ODE system, µN has regularity properties; in
particular, it is equi-bounded and equi-Lipschitz.

• We can apply Ascoli-Arzelà theorem, and say that, up to a
subsequence, ∃µ(lim) such that µN → µ(lim) with respect toW1.

How to find f∞
• The space of admissible controls Fℓ can be shown to be weakly
compact.

• Therefore, ∃f(lim) ∈ Fℓ such that, up to a subsequence, fN ⇀ f(lim).
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Sketch of the Proof

Solution of the Infinite-Dimensional PDE

• It can be shown that µ(lim) solves the infinite-dimensional PDE
by

• showing that each µN is weak solution of the PDE in the sense of
distributions, in particular ∀ζ ∈ C∞c ,∫

R2d
ζ(x, v)dµN(t)(x, v)−

∫
R2d

ζ(x, v)dµN(0)(x, v) =

=

∫
R2d

(∇xζ(x, v) · v+∇vζ(x, v) · (H ⋆ µN(t))(x, v)+

+∇vζ(x, v) · fN(t, x, v))dµN(t)(x, v)

• and then computing the limit for N→ ∞.
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Sketch of the Proof

Optimality of f(lim)

Lastly, one has to show that f(lim) is optimal with respect to the
infinite-dimensional problem. This limit of optimization problems
is called Γ-limit. In particular, given g ∈ Fℓ, we have that∫ T

0

∫
R2d

(L(x, v, µ(lim)) + ψ(f(lim)(t, x, v))dµ(lim)(t, x, v)dt

≤ lim inf
N→∞

∫ T

0

∫
R2d

(L(x, v, µN) + ψ(fN(t, x, v))dµN(t, x, v)dt

≤ lim inf
N→∞

∫ T

0

∫
R2d

(L(x, v, (µg)N) + ψ(g(t, x, v))d(µg)N(t, x, v)dt

=

∫ T

0

∫
R2d

(L(x, v, µg) + ψ(g(t, x, v))dµg(t, x, v)dt
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• The first inequality is consequence of properties of
semicontinuity of the controls and dominated convergence;

• the second inequality is due to optimality of fN;
• the last equality is due to dominated convergence.
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Sketch of the Proof

Conclusion
We can therefore conclude that ∃(µ∞, f∞) and, in particular,
µ∞ := µ(lim) and f∞ := f(lim).
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Conclusion

Take-home
(Under regularity assumptions) an optimal control problem with
“mean-field” ODE contraints of the form we defined converges
weakly and up to a subsequence under mean-field limit to an
optimal control problem with McKean-Vlasov PDE contstraint.

Other Observations
We had no time to focus on:

• The fact that the finite-dimensional problem (and therefore the
infinite-dimensional) has a solution for every admissible control;

• the assumptions on the functions describing the system (which
may be considered too strong, in particular the linear bound on
interaction term H);

• the fact that the convergence is only weak and up to a
subsequence.
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Conclusion

Strong and weak point of the paper
• It proves an important existence result;
• it does not provide characterisation of the mean-field control
neither numerical ways to approximate it.

Consequences
The results can be used to prove consistency to a wide class of
problems of practical interest under the mean-field limit, for
example the flocking emergence in Cucker-Smale model we cited at
the beginning.

Thank you for your attention!
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