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Gradient Flows in Euclidean

Space



Gradient Flows in Rd

Starting from a point x0 you want to move towards the minimum of a

function F .

Idea: move towards the steepest descent of F , i.e. the negative gradient

direction.

x0
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Gradient Flows in Rd

x0

You can imagine a continuous curve

x(t) which at each instant moves to-

wards the steepest decrease of F .

Gradient Flow in Rd

Given F : Ω ⊆ Rd → R nice

enough, x0 ∈ Ω, a gradient flow of

F is a solution of the Cauchy

problem

{
x ′(t) = −∇F (x(t))

x(0) = x0

In general, x ′ ∈ −∂F (x(t)).

8



Gradient Flows in Rd

x0

You can imagine a continuous curve

x(t) which at each instant moves to-

wards the steepest decrease of F .

Gradient Flow in Rd

Given F : Ω ⊆ Rd → R nice

enough, x0 ∈ Ω, a gradient flow of

F is a solution of the Cauchy

problem

{
x ′(t) = −∇F (x(t))

x(0) = x0

In general, x ′ ∈ −∂F (x(t)).

8



Discrete Scheme

For numerical reasons or to relax the regularity of F , we can define a

discrete scheme.

Minimizing Movement Scheme

Fix the time step τ > 0, for k = 0, 1, . . .

xτk+1 = argmin
x∈Ω

F (x) +

distance︷ ︸︸ ︷
|x − xτk | 2

2τ



Optimality Conditions

By the optimality condition ∇
(
F (xτk+1) +

|xτ
k+1−xτ

k |2

2τ

)
= 0, you recover

Implicit Euler Scheme.
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Convergence

We can interpolate the sequence from the discrete scheme {xτk }k in two

ways.
x0

Piecewise constant interpolation

x0

Interpolation by segments

Under some hypotheses, for τ ↓ 0, the two interpolations converge to a

solution of a gradient flow x ′(t) ∈ −∂F (x(t)).
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Generalization

xτk+1 = argmin
x∈Rd

F (x) +

distance︷ ︸︸ ︷
|x − xτk | 2

2τ


Two ideas

• Replace the euclidean distance |x − y |2 in the discrete scheme with

the Wasserstein distance;

• choose wisely the functional F to retrieve, at convergence, PDEs of

particular interest in place of x ′ = −∇F (x).
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JKO Scheme for the

Fokker-Planck Equation



Structure of the Presentation

Historical Insight

• Jordan, Kinderlehrer and Otto in 1998 in the paper The Variational

Formulation of the Fokker-Planck Equation used for the first time

the concept of gradient flows to characterize the Fokker-Planck

PDE;

• comparison was mainly with the known discretization of the heat

equation as gradient flow of the Dirichlet energy with respect to the

L2 distance in Rn.

We will present the result from Jordan, Kinderlehrer and Otto following

the modern approach established after the book Gradient Flows of

Ambrosio, Gigli and Savaré in 2005 and summarized by Santambrogio in

his book Optimal Transport for Applied Mathematicians in 2015 and in

2017 in a survey titled Euclidean, metric, and Wasserstein gradient flows:

an overview.
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Why Fokker-Planck Equation?

Fokker-Planck Equation

ρ = ρt ∈ P2(Ω ⊆ Rd),

∂tρt −∆ρt −∇ · (ρt∇Ψ) = 0

• It is a generalization of the heat equation ∂tρt −∆ρt = 0;

• it represents the evolution of the probability density of a stochastic

process (Xt)t under Langevin diffusion

dXt = −∇Ψ(Xt)dt +
√
2dBt

• its stationary distribution is the Gibbs distribution

ρGibbs(x) = e−Ψ(x)/Z ;

13
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Fokker Planck as a Gradient Flow

Last but not Least

• it is the gradient flow in the Wasserstein space of the

Kullback-Leibler functional

KL(ρ|ρGibbs) =
∫
Ω

ρ(x) log
ρ(x)

Z−1e−Ψ(x)
dx

JKO Scheme

Given a time step τ > 0, we define the JKO scheme

ρτk+1 ∈ argmin
ρ∈P2(Ω)

(
KL(ρ|ρGibbs) +

W2
2 (ρ, ρ

τ
k )

2τ

)
where, by slight abuse of notation, we write

KL(ρ) :=

{∫
Ω
ρ log ρ+

∫
Ω
Ψdρ, ρ << Ld ;

+∞, otherwise.
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Results

ρτk+1 ∈ argmin
ρ∈P2(Ω)

K̃L(ρ):=︷ ︸︸ ︷(
KL(ρ) +

W2
2 (ρ, ρ

τ
k )

2τ

)

Results

1. The JKO scheme is well posed (existence and unicity of a

minimizer);

2. piecewise constant interpolation of the JKO scheme {ρτk}k
converges to the solution of the Fokker-Planck equation.

Assumptions

Ω is convex and compact; KL(ρτ0 := ρ0) < +∞.
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Well-posedness of the JKO scheme

Existence of a minimizer

• Since Ω is compact, P2(Ω) is compact with respect to the W2

distance (and, equivalently, for the weak topology);

• KL(ρ) +
W2

2 (ρ,ρ
τ
k )

2τ =: K̃L(ρ) is lower semicontinuous, i.e.

K̃L(ρ) ≤ lim inf
n→∞
ρn→ρ

K̃L(ρn)

By direct method of calculus of variations, ∃ρ̄ = argminρ∈P2(Ω) K̃L(ρ).

Unicity of the minimizer

From strict convexity of K̃L, it follows uniqueness of the minimizer.
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Interpolations

Interpolations

Given {ρτk}k solution of the JKO scheme, we can build the interpolation

• Piecewise constant interpolation:

ρτt := ρτk+1 ∀t ∈ (kτ, (k + 1)τ ]

We can associate a velocity vector

−vτ
t :=

Tρτ
k+1→ρτ

k
− id

τ
∀t ∈ (kτ, (k + 1)τ ]

and a momentum E τ
t := ρτt v

τ
t .

• We would like to build another continuous interpolation, but what is

the best way to do it?

In Rd we could take the segment. But in the Wasserstein space?
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Geometric Interlude



Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function

t ∈ [0, 1] → ρt ∈ P2(Ω) s.t. W2(ρs , ρt) ≤
∫ t

s
g(r)dr , g ∈ L1(0, 1)

Theorem

For any (ρt)t absolutely continuous curve in the Wasserstein space,

∃(vt)t ⊆ L2ρt
(Rd) velocity field such that, for a.e. t,

(i) ∂tρt +∇ · (vtρt) = 0 (continuity equation);

(ii) ∥vt∥L2
ρt
(Rd ) = |ρ′|(t) := limh↓0

W2(ρt+h,ρt)
h .

Definitions

Length of (ρt)t :=
∫ 1

0
|ρ′|(t)dt;

We call constant-speed geodesic between two probabilities measures µ

and ν the curve (ρt)t of minimum length between µ and ν with

constant speed |ρ′|.

18



Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function

t ∈ [0, 1] → ρt ∈ P2(Ω) s.t. W2(ρs , ρt) ≤
∫ t

s
g(r)dr , g ∈ L1(0, 1)

Theorem

For any (ρt)t absolutely continuous curve in the Wasserstein space,

∃(vt)t ⊆ L2ρt
(Rd) velocity field such that, for a.e. t,

(i) ∂tρt +∇ · (vtρt) = 0 (continuity equation);

(ii) ∥vt∥L2
ρt
(Rd ) = |ρ′|(t) := limh↓0

W2(ρt+h,ρt)
h .

Definitions

Length of (ρt)t :=
∫ 1

0
|ρ′|(t)dt;

We call constant-speed geodesic between two probabilities measures µ

and ν the curve (ρt)t of minimum length between µ and ν with

constant speed |ρ′|.

18



Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function

t ∈ [0, 1] → ρt ∈ P2(Ω) s.t. W2(ρs , ρt) ≤
∫ t

s
g(r)dr , g ∈ L1(0, 1)

Theorem

For any (ρt)t absolutely continuous curve in the Wasserstein space,

∃(vt)t ⊆ L2ρt
(Rd) velocity field such that, for a.e. t,

(i) ∂tρt +∇ · (vtρt) = 0 (continuity equation);

(ii) ∥vt∥L2
ρt
(Rd ) = |ρ′|(t) := limh↓0

W2(ρt+h,ρt)
h .

Definitions

Length of (ρt)t :=
∫ 1

0
|ρ′|(t)dt;

We call constant-speed geodesic between two probabilities measures µ

and ν the curve (ρt)t of minimum length between µ and ν with

constant speed |ρ′|.

18



Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function

t ∈ [0, 1] → ρt ∈ P2(Ω) s.t. W2(ρs , ρt) ≤
∫ t

s
g(r)dr , g ∈ L1(0, 1)

Theorem

For any (ρt)t absolutely continuous curve in the Wasserstein space,

∃(vt)t ⊆ L2ρt
(Rd) velocity field such that, for a.e. t,

(i) ∂tρt +∇ · (vtρt) = 0 (continuity equation);

(ii) ∥vt∥L2
ρt
(Rd ) = |ρ′|(t) := limh↓0

W2(ρt+h,ρt)
h .

Definitions

Length of (ρt)t :=
∫ 1

0
|ρ′|(t)dt;

We call constant-speed geodesic between two probabilities measures µ

and ν the curve (ρt)t of minimum length between µ and ν with

constant speed |ρ′|.
18



Two Nice Geometric Results

Benamou-Brenier Formulation of OT

W2
2 (µ, ν) = min

{∫ 1

0

∥vt∥2L2dt : ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}

Geodesic

The constant-speed geodesic between ρτk and ρτk+1 is

((1− t)id + tTρτ
k →ρτ

k+1
)♯ρ

τ
k

Note: the constant-speed geodesic exists unique between ρτk << Ld .
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Convergence to the

Fokker-Planck Solutions



Convergence

Interpolation along geodesics

We define the interpolation along geodesics

ρ̃τt := ((1− t)id + tTρτ
k →ρτ

k+1
)♯ρ

τ
k t ∈ (kτ, (k + 1)τ ]

We call (ṽτ
t )t the corresponding velocity field and Ẽ τ = ρ̃τ ṽτ the

momentum.

Bound

We can show that

W2(ρ̃
τ
t , ρ̃

τ
s ) ≤ C (t − s)1/2

Corollaries

• By Ascoli-Arzelà theorem, ∃ρ s.t. ρ̃τ ⇀ ρ;

• W2(ρ̃
τ
t , ρ

τ
t ) → 0 for τ ↓ 0.

One can also show that w − limτ↓0 E
τ = E = w − limτ↓0 Ẽ

τ weakly.
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Solution of the Fokker-Planck Equation

We can define (ρ,E ) as same weak limit of both the interpolations

(ρτ ,E τ ) and (ρ̃τ , Ẽ τ ).

Theorem

(ρ,E ) solve in the distributional sense
∂tρt +∇ · Et = 0

Et = −∇ρt − ρt∇Ψ

ρ(0) = ρ0

⇝

{
∂tρt −∆ρt −∇ · (ρt∇Ψ) = 0

ρ(0) = ρ0
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Proof


∂tρt +∇ · Et = 0

Et = −∇ρt − ρt∇Ψ

ρ(0) = ρ0

⇝

{
∂tρt −∆ρt −∇ · (ρt∇Ψ) = 0

ρ(0) = ρ0

First and third equation

• We know (ρ̃τ , Ẽ τ ) solves the continuity equation ∂t ρ̃
τ
t +∇ · Ẽ τ

t = 0

with ρ̃τ (0) = ρ0;

• by weak convergence and continuity, ∂tρt +∇ · Et = 0 and

ρ(0) = ρ0.
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Proof


∂tρt +∇ · Et = 0

Et = −∇ρt − ρt∇Ψ

ρ(0) = ρ0

⇝

{
∂tρt −∆ρt −∇ · (ρt∇Ψ) = 0

ρ(0) = ρ0

Second equation

• If we show that

E τ
t = ρτt v

τ
t

(∗)
= −ρτt (∇(log ρτt +Ψ)) = −∇ρτt − ρτt ∇Ψ

• By weak convergence, it follows Et = −∇ρt − ρt∇Ψ.

We just need to show −vτ := T−id
τ = ∇(log ρτ +Ψ).
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Last Step

But proving that T−id
τ = ∇(log ρτ +Ψ) is not trivial, it is actually the

cornerstone of the argument by Jordan, Kinderlehrer and Otto, because it

is the optimality condition for the JKO scheme.

First Variation

Let F : P2(Ω) → R ∪ {+∞}, we define as first variation δF
δρ (ρ) if it

exists any measurable function such that

∀ρ′ ∈ L∞c (Ω) ∩ P2(Ω), ε ∈ [0, 1],

d

dε
F (ρ+ ε(ρ′ − ρ))|ε=0 =

∫
δF

δρ
(ρ)d(ρ′ − ρ)

The first variation is defined for any ρ s.t. F (ρ+ ε(ρ′ − ρ)) < +∞.
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Last Step

Claim: T−id
τ = ∇(log ρτ +Ψ)

First Variation

d

dε
F (ρ+ ε(ρ′ − ρ))|ε=0 =

∫
δF

δρ
(ρ)d(ρ′ − ρ)

Optimality conditions

The optimality condition of the JKO scheme can be seen as a condition

on the first variation of the functional K̃L we are minimizing

∇

(
δK̃L

δρ
(ρτk+1)

)
= 0
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Last Step

Claim: T−id
τ = ∇(log ρτ +Ψ)

Tool: ∇
(

δK̃L
δρ (ρτk+1)

)
= 0

First Variations

• δKL
δρ (ρτk+1) = 1 + log(ρτk+1) + Ψ;

• δ(W2
2 (·,ρ

τ
k )/2τ)

δρ (ρτk+1) =
φ
τ where φ is the Kantorovich potential for

the associated cost functional for the transport from ρτk+1 to ρτk .

Optimality Condition

By writing the optimality condition and using Brenier’s theorem, we

obtain the equality we needed:

id− Tρτ
k+1→ρτ

k

τ
=

∇φ

τ
= −∇(log(ρτk+1) + Ψ)
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id− Tρτ
k+1→ρτ

k

τ
=

∇φ

τ
= −∇(log(ρτk+1) + Ψ)
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Hints of Extension to the Metric

Case



Generalization

General JKO scheme

The JKO scheme gives a intuitive way to its generalization to metric

spaces

ρτk+1 ∈ argmin
ρ∈P2(Ω)

(
KL(ρ) +

W2
2 (ρ, ρ

τ
k )

2τ

)
⇝

⇝ xτk+1 ∈ argmin
x∈X

(
F (x) +

d2(x , xτk )

2τ

)

under F l.s.c. and suitable compactness.

Also the piecewise constant interpolation makes sense

xτt := xτk+1 ∀t ∈ (kτ, (k + 1)τ ]

But what does it mean convergence to a gradient flow in a metric space?
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Geodesic Spaces

We can consider a slightly more regular space.

Geodesic Spaces

(X , d) is a geodesic space if there always exists a geodesic between two

arbitrary points and the length of the geodesic is equal to the distance

between the two points.

Geodesic Interpolation

We can define the geodesic interpolation x̃τ (t) of the solutions of the

generalized JKO scheme {xτk }k .

Geodesic λ-convexity

F is λ-geodesically convex if, given x(0), x(1) ∈ X and x(t) the

constant-speed geodesic between them,

F (x(t)) ≤ (1− t)F (x(0)) + tF (x(1))− λ
t(1− t)

2
d2(x(0), x(1))
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Gradient Flows in Geodesic Spaces: EDE

There are several notions of generalization of gradient flows in metric

spaces, we will define only one.

In the Euclidean setting, assuming enough smoothness,

F (x(s))− F (x(t)) =

∫ t

s

−∇F (x(r)) · x ′(r)dr =
∫ t

s

|x ′(r)||∇F (x(r))|dr =

=

∫ t

s

(
1

2
|x ′(r)|2 + 1

2
|∇F (x(r))|2

)
dr

The equality holds if and only if x ′(r) = −∇F (x(r)).
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2
|∇F (x(r))|2

)
dr

The equality holds if and only if x ′(r) = −∇F (x(r)).

EDE

F λ-geodesically convex, satisfies the EDE if

F (x(s))− F (x(t)) =

∫ t

s

(
1

2
|x ′|2(r) + 1

2
|∇−F |2(x(r))

)
dr ,

where

• |x ′|(r) := limh↓0
d(x(r+h),x(r))

h (metric derivative);

• |∇−F |(x) := lim supy→x
y ̸=x

[F (x)−F (y)]+
d(x,y) (descending slope).
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Convergence of the general JKO scheme

xτk+1 ∈ argmin
x∈X

(
F (x) +

d2(x , xτk )

2τ

)

A Condition for Convergence

If F is λ-geodesically convex, lower semicontinuous and with compact

sublevels, we have that the generalized JKO scheme under geodesic

interpolation converges for τ ↓ 0 to a curve (x(t))t satisfying the EDE

definition of gradient flow

F (x(s))− F (x(t)) =

∫ t

s

(
1

2
|x ′|2(r) + 1

2
|∇−F |2(x(r))

)
dr
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Conclusion



Conclusion

Takeaways

• The JKO scheme gives a general scheme to deal with gradient flows

in discrete setting,

xτk+1 ∈ argmin
x∈X

(
F (x) +

d2(x , xτk )

2τ

)

• By choosing wisely the functional F , an interpolation of the JKO

scheme solutions converge to a curve which models a gradient flow.

• In particular, if F (·) = KL(·|ρGibbs) and the distance is the

2-Wasserstein distance, the gradient flow we obtain at convergence

is the Fokker-Planck equation.

Thank you for your attention!
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