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Gradient Flows in Euclidean
Space



Gradient Flows in R¢

Starting from a point xp you want to move towards the minimum of a
function F.

Idea: move towards the steepest descent of F, i.e. the negative gradient
direction.
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You can imagine a continuous curve
x(t) which at each instant moves to-
X0 wards the steepest decrease of F.



Gradient Flows in R¢

You can imagine a continuous curve
x(t) which at each instant moves to-
X0 wards the steepest decrease of F.

Gradient Flow in R?

Given F : Q C R? — R nice
enough, xo € Q, a gradient flow of
F is a solution of the Cauchy
problem

{x’(t) = —VF(x(1))
x(0) =xo

In general, x’ € —OF(x(t)).



Discrete Scheme

For numerical reasons or to relax the regularity of F, we can define a
discrete scheme.

Minimizing Movement Scheme

Fix the time step 7 > 0, for k = 0,1, ...

distance
—
T . |X — X;(— 2
Xie1 = arg min FO)+ ="
X



Discrete Scheme

For numerical reasons or to relax the regularity of F, we can define a
discrete scheme.

Minimizing Movement Scheme

Fix the time step 7 > 0, for k = 0,1, ...

distance
x —x¢|?
X{.q = argmin | F(x) + —F—
x€EQ 27

Optimality Conditions

T T2
By the optimality condition V (F(XZ+1) + %) =0, you recover

Implicit Euler Scheme.



Convergence

We can interpolate the sequence from the discrete scheme {x] }« in two

ways.
X0 X0

Piecewise constant interpolation Interpolation by segments
Under some hypotheses, for 7 | 0, the two interpolations converge to a
solution of a gradient flow x'(t) € —9F (x(t)).
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Generalization

distance
==
. x =il
Xpp1 = argmin | F(x) + ———
x€Rd 2T

Replace the euclidean distance |x — y|? in the discrete scheme with
the Wasserstein distance;
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Generalization

distance
_ X712
Xpp1 = argmin | F(x) + be—xel®
x€Rd 2T

Replace the euclidean distance |x — y|? in the discrete scheme with
the Wasserstein distance;

choose wisely the functional F to retrieve, at convergence, PDEs of
particular interest in place of x’ = —VF(x).
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JKO Scheme for the
Fokker-Planck Equation




Structure of the Presentation

Historical Insight

e Jordan, Kinderlehrer and Otto in 1998 in the paper The Variational
Formulation of the Fokker-Planck Equation used for the first time

the concept of gradient flows to characterize the Fokker-Planck
PDE;

e comparison was mainly with the known discretization of the heat
equation as gradient flow of the Dirichlet energy with respect to the
L2 distance in R".
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Structure of the Presentation

Historical Insight

e Jordan, Kinderlehrer and Otto in 1998 in the paper The Variational
Formulation of the Fokker-Planck Equation used for the first time

the concept of gradient flows to characterize the Fokker-Planck
PDE;

e comparison was mainly with the known discretization of the heat
equation as gradient flow of the Dirichlet energy with respect to the
L2 distance in R".

We will present the result from Jordan, Kinderlehrer and Otto following
the modern approach established after the book Gradient Flows of
Ambrosio, Gigli and Savaré in 2005 and summarized by Santambrogio in
his book Optimal Transport for Applied Mathematicians in 2015 and in
2017 in a survey titled Euclidean, metric, and Wasserstein gradient flows:
an overview.
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Why Fokker-Planck Equation?

Fokker-Planck Equation
p=p: € P(QCRY),

Otpr — Apt =V - (p:VV) =0
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Why Fokker-Planck Equation?

Fokker-Planck Equation
p=p: € P(QCRY),

Otpr — Apt =V - (p:VV) =0

e It is a generalization of the heat equation 0;p; — Ap; = 0;

e it represents the evolution of the probability density of a stochastic
process (X;): under Langevin diffusion

dX; = —VV(X,)dt + V2dB,
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Why Fokker-Planck Equation?

Fokker-Planck Equation
p=p: € P(QCRY),

Otpr — Apt =V - (p:VV) =0

e It is a generalization of the heat equation 0;p; — Ap; = 0;

e it represents the evolution of the probability density of a stochastic
process (X;): under Langevin diffusion

dX; = —VV(X,)dt + V2dB,
e its stationary distribution is the Gibbs distribution

Paibbs(x) = eV /Z;

13



Fokker Planck as a Gradient Flow

Last but not Least

e it is the gradient flow in the Wasserstein space of the
Kullback-Leibler functional

p(x)
KL(P|pGibbs):/QP(X) log mdx
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Fokker Planck as a Gradient Flow

Last but not Least

e it is the gradient flow in the Wasserstein space of the
Kullback-Leibler functional

p(x)
KL(P\PGibbs):/QP(X) log mdx

JKO Scheme

Given a time step 7 > 0, we define the JKO scheme

) W2 , T
Pk € argmin (KL(P|PGibbs) + 2(2ppk)>
PEP>(Q) T

where, by slight abuse of notation, we write

Jorlogp+ o Wdp, p << LY

400, otherwise.

KL(p) := {

14



KL(p):=

W&%ﬂ»

T

ﬂﬂea@mm<Kum+
PEP2(Q)

Results

1. The JKO scheme is well posed (existence and unicity of a
minimizer);

2. piecewise constant interpolation of the JKO scheme {p] }«
converges to the solution of the Fokker-Planck equation.

Assumptions

Q is convex and compact; KL(pf := po) < +o0.
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Well-posedness of the JKO scheme

Existence of a minimizer

e Since Q is compact, P»(Q) is compact with respect to the W,
distance (and, equivalently, for the weak topology);

2 T —~
o KL(p) + W =: KL(p) is lower semicontinuous, i.e.

KL(p) < liminf KL(pn)
Pn—p

By direct method of calculus of variations, 35 = arg min ,cp,(q) KL(p).

Unicity of the minimizer

From strict convexity of KL, it follows uniqueness of the minimizer.
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Interpolations

Interpolations

Given {pj, }« solution of the JKO scheme, we can build the interpolation

e Piecewise constant interpolation:
o= pfyy V€ (kr (K + 1)7)
We can associate a velocity vector

Top. oy —id

vt e (kr, (k + 1)7]

T
—V, =
t

T

T «— T\, T
and a momentum E[ = p]v/.
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Interpolations

Interpolations

Given {pj, }« solution of the JKO scheme, we can build the interpolation

e Piecewise constant interpolation:
o= pfyy V€ (kr (K + 1)7)
We can associate a velocity vector

Top. oy —id

vt e (kr, (k + 1)7]

T
—V, =
t

T

T «— T\, T
and a momentum E[ = p]v/.

e We would like to build another continuous interpolation, but what is
the best way to do it?

In RY we could take the segment. But in the Wasserstein space?
17



Geometric Interlude




Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function
£ € [0,1] = pr € Pa(Q) s.t. Walps,po) < [ g(r)dr, g € L1(0,1)
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Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function
£ € [0,1] = pr € Pa(Q) s.t. Walps,po) < [ g(r)dr, g € L1(0,1)

Theorem

For any (p:): absolutely continuous curve in the Wasserstein space,
I(ve)e C L3,(RY) velocity field such that, for a.e. t,

(i) O¢pr + V - (vepr) = 0 (continuity equation);

.. - W t s Pt
(1) [[velliz, ey = [9/1(2) := limpyo Yellseased,
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Curve

An absolutely continuous curve in in the Wasserstein space is a function
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Theorem

For any (p:): absolutely continuous curve in the Wasserstein space,
I(ve)e C L3,(RY) velocity field such that, for a.e. t,

(i) O¢pr + V - (vepr) = 0 (continuity equation);

.. - W t s Pt
(i) [[velliz, ey = [9'](2) := limpyg 2elepease),

Definitions

Length of (p¢); := fol Ip'|(t)dt;
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Curves in the Wasserstein Space

Curve

An absolutely continuous curve in in the Wasserstein space is a function
£ € [0,1] = pr € Pa(Q) s.t. Walps,po) < [ g(r)dr, g € L1(0,1)

Theorem

For any (p:): absolutely continuous curve in the Wasserstein space,
I(ve)e C L3,(RY) velocity field such that, for a.e. t,

(i) O¢pr + V - (vepr) = 0 (continuity equation);

.. - W t s Pt
(i) [[velliz, ey = [9'](2) := limpyg 2elepease),

Definitions

Length of (p¢); := fol Ip'|(t)dt;

We call constant-speed geodesic between two probabilities measures p
and v the curve (p;); of minimum length between 1 and v with
constant speed |p/|.
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Two Nice Geometric Results

Benamou-Brenier Formulation of OT

1
W3 (s, v) = min {/ IvellZ2dt 2 Bepe + V- (peve) = 0, po = i, p1 = V}
0

19



Two Nice Geometric Results

Benamou-Brenier Formulation of OT
1
W3 (s, v) = min {/ IvellZ2dt 2 Bepe + V- (peve) = 0, po = i, p1 = V}
0

Geodesic

The constant-speed geodesic between p; and pj_, is
((1 = t)ld =F tszﬁpzﬂ)ﬁpZ

Note: the constant-speed geodesic exists unique between p] << L£9.
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Convergence to the
Fokker-Planck Solutions




Convergence

Interpolation along geodesics
We define the interpolation along geodesics

BT = (1= 0id + Ty Yupk t € (kr, (k+1)7]

We call (77), the corresponding velocity field and E7 = 57¢7 the
momentum.
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Convergence

Interpolation along geodesics

We define the interpolation along geodesics
Fi = (L= )+ tTyrpp Jiok ¢ € (kT (k+ 1)7]

We call (77), the corresponding velocity field and E7 = 57¢7 the
momentum.

Bound
We can show that
Wa(p7, 57) < C(t — s)M/?
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Convergence

Interpolation along geodesics
We define the interpolation along geodesics

5T = (1= O)d+ tToosyg, Jupk € (kr, (k+1)7]
We call (77), the corresponding velocity field and E7 = 57¢7 the

momentum.

Bound

We can show that
Wa(p7, 57) < C(t — s)M/?

Corollaries

e By Ascoli-Arzela theorem, Jp s.t. p7 — p;
o Wh(p7,pi) — 0 for 7 ] 0.

One can also show that w — lim; g ET = E = w — lim,|o ET weakly.
20



Solution of the Fokker-Planck Equation

We can define (p, E) as same weak limit of both the interpolations
(p7,ET)and (57, ET).

Theorem

(p, E) solve in the distributional sense

Oipr +V - E. =0
E: = —Vp: — p:VV

" { Orpr — Bpt =V - (p:VV) =0
p(0) = po

p(0) = po

21



Oipe +V - Et =0
Et = —th — ptV\U

- { Orpr — Dpr — V- (p:VV) =0
p(0) = po

p(0) = po

First and third equation

e We know (57, E™) solves the continuity equation d:7 + V - E] =0
with 57(0) = po;

e by weak convergence and continuity, O;p: + V - E; = 0 and
p(0) = po.
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Oipe +V - Et =0

Oipr — Dpy — V- VV)=0
Ei = —Vp: — p:VV R { e P (pt )

2(0) = po p(0) = po

Second equation

e If we show that
T ror () T T T T
El = pivi = —p{(V(logpi + V)) = =Vpi — p{VV¥

e By weak convergence, it follows E; = —Vp; — p; V.

23



Oipe +V - Et =0

Oipr — Dpy — V- VV)=0
Ei = —Vp: — p:VV R { e P (pt )

2(0) = po p(0) = po

Second equation

e |f we show that
T ror () T T T T
El = pivi = —p{(V(logpi + V)) = =Vpi — p{VV¥
e By weak convergence, it follows E; = —Vp; — p: VV.
We just need to show —v7 := T=9 = V(log p™ + V).

23



But proving that T%id = V(log p™ + V) is not trivial, it is actually the
cornerstone of the argument by Jordan, Kinderlehrer and Otto, because it
is the optimality condition for the JKO scheme.
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But proving that @ = V(log p™ + V) is not trivial, it is actually the
cornerstone of the argument by Jordan, Kinderlehrer and Otto, because it
is the optimality condition for the JKO scheme.

First Variation
Let F : Pr(Q) — RU {400}, we define as first variation %(p) if it
exists any measurable function such that
Vp' € L2(Q2) N P2(R2),e € [0,1],
d , oF )
= _ =2V —
ge (P +e(P’ = p))ie=o 5 (P)d(p" = p)
The first variation is defined for any p s.t. F(p+<(p’ — p)) < +o0.

24



Claim: 7= = V(log p™ + V)

First Variation
oF
op

9 ot el = oo = | E(p)dlel = p)

de
Optimality conditions

The optimality condition of the JKO scheme can be seen as a condition
on the first variation of the functional KL we are minimizing

SKL , _
v <5P(Pk+1)> =0

25



Claim: T=1¢ = V(log p”™ + V)

Tool: V (m (pk+1)) =0

First Variations

O SKL (pk+1) =1+ |°g(pk+1) + v

5(Wz2( 7I)k)/27-)(
op
the associated cost functional for the transport from pj_; to py.

° Pis1) = £ where @ is the Kantorovich potential for

26



Claim: T=1¢ = V(log p”™ + V)

Tool: V (m (pkﬂ)) =0

First Variations

O 6KL (pk+1) =1+ |Og(pk+1) +V;

2
o %W(phl) = £ where ¢ is the Kantorovich potential for

the associated cost functional for the transport from pj_; to py.

Optimality Condition
By writing the optimality condition and using Brenier's theorem, we
obtain the equality we needed:

id—Tyr pr Vo ~

a2 _ 2P Y (log(pf) + V)

T



Hints of Extension to the Metric
Case




Generalization

General JKO scheme
The JKO scheme gives a intuitive way to its generalization to metric
spaces

W2(p, pL
PZH € arg min ( KL(p) + 2(,opk)> —

PEP2(Q) 2T
) d2 , T
~ Xy € arger;m ( F(x)+ ()2<7Xk))

under F l.s.c. and suitable compactness.
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General JKO scheme
The JKO scheme gives a intuitive way to its generalization to metric
spaces

W2(p, pL
ﬂhl € arg min ( KL(p) + 2(,opk)> —

PEP2(Q) 2T
) d2 , T
~ Xy € arger;m ( F(x)+ ()2<7Xk))

under F l.s.c. and suitable compactness.

Also the piecewise constant interpolation makes sense

x{ =xp41 Vte (kr,(k+1)7]

27



Generalization

General JKO scheme
The JKO scheme gives a intuitive way to its generalization to metric
spaces

W2(p, pL
PZ+1 € arg min ( KL(p) + 2('0pk)> —
PEP2() 2T

i d2 , T
~ Xy € arger;m ( F(x)+ ()2<7Xk))

under F l.s.c. and suitable compactness.

Also the piecewise constant interpolation makes sense
x{ =xp41 Vte (kr,(k+1)7]

But what does it mean convergence to a gradient flow in a metric space?
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Geodesic Spaces

We can consider a slightly more regular space.
Geodesic Spaces

(X, d) is a geodesic space if there always exists a geodesic between two
arbitrary points and the length of the geodesic is equal to the distance
between the two points.

28



Geodesic Spaces

We can consider a slightly more regular space.

Geodesic Spaces
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Geodesic Interpolation

We can define the geodesic interpolation X7(t) of the solutions of the
generalized JKO scheme {x] }.
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Geodesic Spaces

We can consider a slightly more regular space.

Geodesic Spaces

(X, d) is a geodesic space if there always exists a geodesic between two
arbitrary points and the length of the geodesic is equal to the distance
between the two points.

Geodesic Interpolation

We can define the geodesic interpolation X7(t) of the solutions of the
generalized JKO scheme {x] }.

Geodesic \-convexity
F is A-geodesically convex if, given x(0),x(1) € X and x(t) the
constant-speed geodesic between them,

M=) 42 (x(0). x(1))

F(x(8)) < (1= F (x(0)) + tF(x(1) - AL~ 5

28



Gradient Flows in Geodesic Spaces: EDE

There are several notions of generalization of gradient flows in metric
spaces, we will define only one.
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Gradient Flows in Geodesic Spaces: EDE

There are several notions of generalization of gradient flows in metric
spaces, we will define only one.

In the Euclidean setting, assuming enough smoothness,

Fx(s)) ~ F) = [ V() X0 = [ W OIVF)lar =

-

The equality holds if and only if x'(r) = =V F(x(r)).

(G R + ITFONE) o
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Gradient Flows in Geodesic Spaces: EDE

In the Euclidean setting, assuming enough smoothness,

FIX(s) = Fx(®) = | =VFx(r)) X' ()dr = [ X (I F(x(r)lar =
= [ (G OP + 5IVAE )

The equality holds if and only if x'(r) = =V F(x(r)).

EDE

F A-geodesically convex, satisfies the EDE if

Fix(s) = F(x(e) = [ (GIX P+ 3197 FRG(r) ) o,

where
o |X'|(r) :=limpyo w (metric derivative);
o |[V7F|(x) := limsupy—x W (descending slope).
y#x 4
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Convergence of the general JKO scheme

d2 a7
Xj41 € arg min < F(x) + (X’Xk)>
x€X 27
A Condition for Convergence

If F is A\-geodesically convex, lower semicontinuous and with compact
sublevels, we have that the generalized JKO scheme under geodesic

interpolation converges for 7 | 0 to a curve (x(t)); satisfying the EDE
definition of gradient flow

(o) ~ Fs(e) = [ (S0P + 519 FRG0) ) e
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Conclusion

Takeaways

e The JKO scheme gives a general scheme to deal with gradient flows
in discrete setting,

d2 T
Xj41 € arg min ( F(x) + (X’X"))
xEX 27
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Conclusion

Takeaways

e The JKO scheme gives a general scheme to deal with gradient flows
in discrete setting,

il in| F
Xi41 € argmin ( (x) + o

xeX

e By choosing wisely the functional F, an interpolation of the JKO
scheme solutions converge to a curve which models a gradient flow.
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Conclusion

Takeaways

e The JKO scheme gives a general scheme to deal with gradient flows
in discrete setting,

d?(x, x7)
2T

Xj41 € arg min ( F(x) +
xeX
e By choosing wisely the functional F, an interpolation of the JKO

scheme solutions converge to a curve which models a gradient flow.

e In particular, if F(-) = KL(-|pgibbs) and the distance is the
2-Wasserstein distance, the gradient flow we obtain at convergence
is the Fokker-Planck equation.
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Conclusion

Takeaways

e The JKO scheme gives a general scheme to deal with gradient flows
in discrete setting,

g in( F
Xi41 € argmin ( (x) + o

xeX

e By choosing wisely the functional F, an interpolation of the JKO
scheme solutions converge to a curve which models a gradient flow.

e In particular, if F(-) = KL(-|pgibbs) and the distance is the
2-Wasserstein distance, the gradient flow we obtain at convergence
is the Fokker-Planck equation.

Thank you for your attention!
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