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GD does not take into account the geometry of the problem. 2
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find p* = argmin, ., L(p) when M is an information manifold.

— Riemannian manifolds with additional structure.

— Aim to geometrically represent how information passes from data to models.
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Motivating Example

Example
M:={py=N@®)|0=(Z""p,-£7"/2) € 0}
with appropriate manifold structure is an information manifold.

Optimization Problem
Given x data, we may want to find #* the maximum likelihood estimator

find 6"
solving min 0(0; x) zplz)nelﬁ—log(pg(x))

negative
log-likelihood
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Information Geometry



Manifold

A D-dimensional manifold is a topological space (locally) homeomorphic to an open
set of RP.

— We will consider global homeomorphism.

We can define a set of coordinates:

6:M — 0 CRP
p—0(p) = (61(p),....0p(p))

where 4 is a homeomorphism (continuous bijection). >>



Differential Manifold

We can define functions L : M — R and %(p) = O(L;f;l) 0(p))

Tangent Space
Vp € M, we associate a tangent space 7,1/, which can be seen as the space of
directional derivatives

ToM :={v:C>®(M)— R |vlinear;v(fg) = v(f)g + fv(9)}

— T,M is a D-dimensional vector space with natural basis corresponding to partial
derivatives B:={e;, i=1,...,D}.
— We can define a vector field as a function

X:peMmveT,M >>
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Riemannian Manifolds

We want to define an inner product g, on T,,M.

Statistical Manifolds

In general, we can consider the manifolds of parametric families induced by the Fisher
information M := {py | § € ©}, I(0) = (IE [8@9/(9; ) 35 1(6; a:)D

= gp(u,v) =uTZ(O(p))v Vu,v € T,M

Bregman Manifolds

The inner product can also be induced by Bregman divergence.

F:©—R mirrormap ~ Bp(@|0):=F@0) —F@)—0-0)'VF(@®)
- gplu,v) =uTVEF(@(p))v Vu,v € T,M

(M, g) as defined is @ Riemannian manifold.



Information Manifolds

Note: from now on, we will consider information manifolds as induced by Bregman
divergence.

To define an information manifold we also need more structure

Affine Connection
We define the affine connection a V : (X,Y) — VxY vector field.

— For Bregman manifolds, V.,e; = 0 for every e;, e; € B natural basis of T),M.
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Information Manifolds

Note: from now on, we will consider information manifolds as induced by Bregman
divergence.

To define an information manifold we also need more structure

Affine Connection
We define the affine connection a V : (X,Y) — VxY vector field.

— For Bregman manifolds, V.,e; = 0 for every e;, e; € B natural basis of T),M.

We also need a dual structure,

V*: (X,Y) V&Y

10
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Three ways to see duality

V V' st X(Y,Z) = (VxY,2)+ (Y, V% 2)
V induced by B — V* induced by By (0 | ') := Bp(¢' | 6)
V induced by B — V* induced by Bp-
where F*(n) := sup{87n — F(0)}
=)

(M, gp,V,V*) induced by Br is an information manifold.

What does duality imply? It defines two sets of coordinates

0 =VF*(n) +—n=VF(@)

>>



Optimization on Information
Manifolds




Riemann Gradient Descent

Riemannian Gradient Descent
Given (M, g) Riemannian manifold.

— Generalization of GD in the sense of optimizing by moving in the direction of
steepest descent;

— We define the map exp,,(v) which gives the arrival point after a unit of time of the
shortest curve starting from p with velocity v.

RGD:  pir1 = exp,, (—a:VarL(p:))

>>
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NGD and MD

Problem
exp,,(v) is computationally intractable.

On the Bregman manifold (M, F),

We can replace exp,(v) with its first-order Taylor approximation exp,,(v) ~ p + v.

NGD: 9,54,_1 = Ht — O (VSF(HIL))_1VQ(L9(915))

V(NG) Lg(6:) natural gradient

1
MD: ;11 = arg min {GTVQLQ(Ht) + —Br(0] Gt)}
0€© O
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Equivalence Result

Given an information manifold (M, g, V, V*) induced by a Bregman divergence Bg, MD
on (M, F) is equivalent to NGD in the dual space (M, F*).

Proof

1
MD: 0t+1 = arg min {OTVL(;(&) A *BF(H ‘ 91‘)}
0ce Qg

Finding the minimum by differentiation yields the step:
VF(GH_l) = VF(Ot) — othQL(@t)
Dual change of variable: n = VF(6), 6= VF*(n),

M+1 ="Mt — atVeL(VF*(m))



Equivalence Result

Proof

1
MD:  60;41 = arg min {QTVLQ(Gt) + —Br(0| Ht)}
e g

Finding the minimum by differentiation yields the step:

VF(9t+1) = VF(gt) - atVGL(Ht)

Dual change of variable: n = VF(0), 6= VF*(n),
M1 =1 — Vo L(VE" (1))

Chain rule: V,L(VF*(n)) = V2F*(n)VoL(VF*())



Equivalence Result

Proof

1
MD:  60;41 = arg min {QTVLQ(Gt) + —Br(0| Ht)}
e g

Finding the minimum by differentiation yields the step:

VF(9t+1) = VF(gt) — atVGL(Qt)
Dual change of variable: n = VF(0), 6= VF*(n),
Ni+1 =Nt — Vo L(VEF* (1))

Chain rule: V,, L(VF*(n)) = V2F*()VoL(VF*(n))
Therefore, Ne+1 = Mt — Oét(VQF* (’l’]t))ilan(VF*(’f]t))

which corresponds to the natural gradient descent step. ]



Back to our motivating example,

M:={pp=N(0)|0=(S""p,—-57"/2) € ©} with F(0) := %||9||§

We want to find the MLE #* given z data:
find 6" = argmin ¢(0; ) = argmin — log(pe(x))
0co peEM
Application
- NGD moves in the direction of steepest descent of £ and asymptotically achieves the
minimum possible asymptotic variance (CR bound) but it requires V2F;

- for MD we don’t have guarantees of moving in direction of steepest descent and of
achieving asymptotical CR bound, but it is a I-order method.

— The equivalence result guarantees that we have a I-order method that achieves CR
bound.
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Conclusion

Takeaways

— Optimization is strongly influenced by space geometry;

— we saw information manifolds induced by parametric families and by Bregman
divergence;

— on information manifolds optimization can be performed through NGD and MD;
— the two are equivalent on Bregman manifolds.

Thank you for your attention!
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