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Motivations



Setting

Setting

L : Θ→ R; find θ∗ = argmin
θ∈Θ

L(θ)

Possible Approach

Gradient Descent (GD): θt+1 = θt − αt∇L(θt)

Problem
GD is coordinate-dependent

θt+1 = θt − αt∇Lθ(θt)
θ=θ(η)−−−−−−−−−−−→

Lη(η)=Lθ(θ(η))
ηt+1 = ηt − αt∇Lη(ηt)

→ In general, {θt}t ̸= {ηt}t.
→ GD does not take into account the geometry of the problem.
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Goal

Goal of the Presentation
Show a “geometry-wise” approach to optimization for a wide class of spaces of
applicative interest.

Which space?

find p∗ = argminp∈M L(p) when M is an information manifold.

→ Riemannian manifolds with additional structure.
→ Aim to geometrically represent how information passes from data to models.
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Motivating Example

Example

M := {pθ = N (θ) | θ =
(
Σ−1µ,−Σ−1/2

)
∈ Θ}

with appropriate manifold structure is an information manifold.

Optimization Problem
Given x data, we may want to find θ∗ the maximum likelihood estimator

find θ∗

solving min
θ∈Θ

ℓ(θ;x)︸ ︷︷ ︸
negative

log-likelihood

= min
pθ∈M

− log(pθ(x))
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Information Geometry



Manifolds

Manifold
A D-dimensional manifold is a topological space (locally) homeomorphic to an open
set of RD .

→ We will consider global homeomorphism.

We can define a set of coordinates:

θ :M → Θ ⊆ RD

p 7→ θ(p) = (θ1(p), . . . , θD(p))

where θ is a homeomorphism (continuous bijection). >>
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Differential Manifold

We can define functions L : M → R and ∂L
∂θi

(p) := ∂(L◦θ−1)
∂xi

(θ(p))

Tangent Space
∀p ∈M , we associate a tangent space TpM , which can be seen as the space of
directional derivatives

TpM := {v : C∞(M)→ R | v linear; v(fg) = v(f)g + fv(g)}

→ TpM is a D-dimensional vector space with natural basis corresponding to partial
derivatives B := {ei, i = 1, . . . , D}.

→ We can define a vector field as a function
X : p ∈M 7→ v ∈ TpM >>

7



Riemannian Manifolds

We want to define an inner product gp on TpM .

Two examples of information manifolds we will see:

Statistical Manifolds
In general, we can consider the manifolds of parametric families induced by the Fisher
information M := {pθ | θ ∈ Θ}, I(θ) =

(
E
[

∂
∂θi

ℓ(θ;x) ∂
∂θj

ℓ(θ;x)
])

→ gp(u, v) = uTI(θ(p))v ∀u, v ∈ TpM

Bregman Manifolds
The inner product can also be induced by Bregman divergence.

F : Θ→ R mirror map ⇝ BF (θ | θ′) := F (θ)− F (θ′)− (θ − θ′)T∇F (θ′)

→ gp(u, v) = uT∇2F (θ(p))v ∀u, v ∈ TpM

→ Equivalent for exponential parametric families (e.g. Gaussians).
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F : Θ→ R mirror map ⇝ BF (θ | θ′) := F (θ)− F (θ′)− (θ − θ′)T∇F (θ′)

→ gp(u, v) = uT∇2F (θ(p))v ∀u, v ∈ TpM

Riemannian Manifolds
(M, g) as defined is a Riemannian manifold.
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Information Manifolds

Note: from now on, we will consider information manifolds as induced by Bregman
divergence.

To define an information manifold we also need more structure

Affine Connection
We define the affine connection a ∇ : (X,Y ) 7→ ∇XY vector field.

→ For Bregman manifolds, ∇eiej = 0 for every ei, ej ∈ B natural basis of TpM .

We also need a dual structure,

∇∗ : (X,Y ) 7→ ∇∗
XY
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Dual

Three ways to see duality

∇ −→ ∇∗ s.t. X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇∗
XZ⟩

∇ induced by BF −→ ∇∗ induced by B∗
F (θ | θ′) := BF (θ

′ | θ)
∇ induced by BF −→ ∇∗ induced by BF∗

where F ∗(η) := sup
θ∈Θ
{θT η − F (θ)}

Information manifold
(M, gP ,∇,∇∗) induced by BF is an information manifold.

What does duality imply? It defines two sets of coordinates

θ = ∇F ∗(η)←→ η = ∇F (θ)

>>
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Optimization on Information
Manifolds



Riemann Gradient Descent

Riemannian Gradient Descent
Given (M, g) Riemannian manifold.

→ Generalization of GD in the sense of optimizing by moving in the direction of
steepest descent;

→ We define the map expp(v) which gives the arrival point after a unit of time of the
shortest curve starting from p with velocity v.

RGD: pt+1 = exppt
(−αt∇ML(pt))

>>
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NGD and MD

Problem
expp(v) is computationally intractable.

On the Bregman manifold (M,F ),

Natural Gradient Descent (NGD)
We can replace expp(v) with its first-order Taylor approximation expp(v) ≈ p+ v.

NGD: θt+1 = θt − αt (∇2
θF (θt))

−1∇θ(Lθ(θt))︸ ︷︷ ︸
∇(NG)Lθ(θt) natural gradient

Mirror Descent (MD)

MD: θt+1 = argmin
θ∈Θ

{
θT∇θLθ(θt) +

1

αt
BF (θ | θt)

}
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Equivalence Result

Theorem [Raskutti, Mukherjee]
Given an information manifold (M, g,∇,∇∗) induced by a Bregman divergence BF , MD
on (M,F ) is equivalent to NGD in the dual space (M,F ∗).

Proof

MD: θt+1 = argmin
θ∈Θ

{
θT∇Lθ(θt) +

1

αt
BF (θ | θt)

}
Finding the minimum by differentiation yields the step:

∇F (θt+1) = ∇F (θt)− αt∇θL(θt)

Dual change of variable: η = ∇F (θ), θ = ∇F ∗(η),

ηt+1 = ηt − αt∇θL(∇F ∗(ηt))
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Application

Back to our motivating example,

M := {pθ = N (θ) | θ =
(
Σ−1µ,−Σ−1/2

)
∈ Θ} with F (θ) :=

1

2
∥θ∥22

We want to find the MLE θ∗ given x data:

find θ∗ = argmin
θ∈Θ

ℓ(θ;x) = argmin
pθ∈M

− log(pθ(x))

Application

• NGD moves in the direction of steepest descent of ℓ and asymptotically achieves the
minimum possible asymptotic variance (CR bound) but it requires ∇2F ;

• for MD we don’t have guarantees of moving in direction of steepest descent and of
achieving asymptotical CR bound, but it is a I-order method.

→ The equivalence result guarantees that we have a I-order method that achieves CR
bound.
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Conclusion

Takeaways

→ Optimization is strongly influenced by space geometry;

→ we saw information manifolds induced by parametric families and by Bregman
divergence;

→ on information manifolds optimization can be performed through NGD and MD;
→ the two are equivalent on Bregman manifolds.

Thank you for your attention!
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