
Enhancing Parameter Control Policies with State Information
Gianluca Covini
University of Pavia

Pavia, Italy

Denis Antipov
Sorbonne Université, CNRS, LIP6

Paris, France

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT

Parameter control and dynamic algorithm configuration study how
to dynamically choose suitable configurations of a parametrized
algorithm during the optimization process. Despite being an in-
tensively researched topic in evolutionary computation, optimal
control policies are known only for very few cases, limiting the
development of automated approaches to achieve them.

With this work we propose four new benchmarks for which we
derive optimal or close-to-optimal control policies. More precisely,
we consider the optimization of the LeadingOnes function via
RLS𝑘 , a local search algorithm allowing for a dynamic choice of the
mutation strength 𝑘 . The benchmarks differ in which information
the algorithm can exploit to set its parameters and to select off-
spring. In existing running time results, the exploitable information
is typically limited to the quality of the current-best solution. In this
work, we consider how additional information about the current
state of the algorithm can help to make better choices of param-
eters, and how these choices affect the performance. Namely, we
allow the algorithm to use information about the current OneMax
value, and we find that it allows much better parameter choices,
especially in marginal states. Although those states are rarely vis-
ited by the algorithm, such policies yield a notable speed-up in
terms of expected runtime. This makes the proposed benchmarks a
challenging, but promising testing ground for analysis of parameter
control methods in rich state spaces and of their ability to find opti-
mal policies by catching the performance improvements yielded by
correct parameter choices.
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1 INTRODUCTION

The efficiency of optimization algorithms heavily depends on the
choice of their parameters.While evolutionary algorithms and other
black-box optimization techniques have been widely used across
different problem domains, the question of how to optimally set
algorithm parameters remains an ongoing challenge. A common
approach is parameter control, where algorithm parameters are
adjusted dynamically during the optimization process rather than
being fixed beforehand [9, 11, 12, 19].

Recently, a novel framework called Dynamic Algorithm Con-
figuration (DAC) has gained increasing attention as an approach
to enhance the performance of optimization algorithms by ad-
justing their parameters in response to changing problem condi-
tions [1, 7, 22]. The main difference of DAC from parameter control

is that it allows for an explicit training phase to identify good
control policies, i.e., a mapping from the current state to suitable
parameter values, while in parameter control parameter values
have to be chosen on-the-fly, i.e. during the optimization process.
Reinforcement Learning (RL) has emerged as a promising technique
for DAC, as it allows an agent to learn adaptive parameter control
strategies from experience. An RL-based parameter approach has
been applied in [2] to the radius choice of Randomized Local Search
(RLS) algorithm on the problem LeadingOnes showing promising
results. However, one of the main challenges that emerged with
using RL for parameter control and DAC is the difficulty of general-
izing the learning behavior to high-dimensional settings where the
current state of the optimization process is captured by more than
one numerical value (in many parameter control studies, the cur-
rent state is exclusively described by the quality of the current-best
solution [3, 9, 14]). In particular, we note that static or longitudinal
information about the evaluated solutions and their fitness values
are currently not considered, or only in highly aggregated form
such as through success-based rules [10, 12, 13, 16–18].

Development and understanding of parameter control and DAC
methods, especially the ones that are based on RL, heavily relies on
benchmarks, where they can be analyzed and where their policy
of choosing parameters can be evaluated against a known optimal
policy. With the desire to define benchmarks allowing to study
more complex parameter control policies (whether learned online or
through a training process), we investigate settings in which richer
state information is available. For this we need new benchmarks
with higher-dimensional state spaces that satisfy the following
requirements:

(1) we need to be able to compute the optimal policy of choos-
ing parameters for each state of the state space;

(2) the wrong parameters choices should worsen the perfor-
mance of the algorithm;

(3) preferably the optimal parameters should vary depending
on the stage of optimization so that dynamic parameter
control had clear advantage over static parameters tuning.

Recent studies have suggested that additional state information
can sometimes enhance policy learning, but its exact impact on
optimization efficiency remains unclear. As a negative example,
Buzdalov and Buzdalova [5] considered optimization of Leading-
Ones with auxiliary objective OneMax which could be chosen to
be optimized by an RL algorithm, and they showed that smaller
state spaces allow to find the optimum faster.

In this work we propose several benchmarks that are based
on RLS and LeadingOnes and we explore whether incorporating
state representations beyond LeadingOnes fitness can improve dy-
namic parameter policies. Specifically, we study the optimization of
LeadingOnes with three different state descriptors: LeadingOnes-
values only, LeadingOnes and OneMax values, and the current-
best solution 𝑥 . We consider different combinations of using this
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state information in two parts of the algorithm: in the choice of
the distance to sample an offspring (i.e., the choice of the mutation
strength 𝑘) and in the selection of the next-generation parent, when
a current parent and its offspring compete with each other.

We compute exact optimal or close-to-optimal mutation rates
under different state space representations and we show that the
additional information improves the performance compared to the
using only a limited information about the current LeadingOnes
value. This improvement is most pronounced when we use these
clues in the selection step, giving an asymptotical speed-up, but
we also see a notable improvement when we only use additional
information for choosing mutation strength, especially when we
use strict selection in the RLS (that is, whenwe only accept offspring
if its LeadingOnes value is strictly better than its parent’s). Our
findings provide valuable insights into the conditions under which
additional state information is beneficial, refining DAC strategies
and contributing to the design of more effective adaptive algorithms.

The remainder of the paper is organized as follows. Section 2
introduces the problem formulation. Section 3 describes the ap-
proaches developed to compute the policy of choosing mutation
strength when we use the state information in the selection step in
cases when the state information includes OneMax values or the
full information about the current bit string 𝑥 . Section 4 presents
policies when we do not use additional information in selection, but
we use the current OneMax value when selecting the search radius
of the RLS. Section 5 presents results when limiting the portfolio
of possible parameter values, Section 6 concludes with a discussion
of our findings and directions for future research.

Reproducibility. The code that was used for numerical compu-
tation and for experiments described in this paper can be found on
GitHub [8].

2 PRELIMINARIES

In this section we introduce the notation that we use in this paper,
and the three main components of the proposed benchmarks: the
algorithm, the problems, and the state spaces for parameter control.
We then explain our goals that we stated in the introduction in the
context of formally defined benchmarks.

In this paper, for two integer numbers 𝑎 and 𝑏 (𝑏 ≥ 𝑎) by [𝑎..𝑏]
we denote an integer interval, that is, all integer numbers that are
at least 𝑎 and at most 𝑏. For any𝑚 ∈ N by 1𝑚 and 0𝑚 we denote
a bit string of 𝑚 ones and 𝑚 zeros respectively. For 𝑚 = 0 both
denote an empty bit string.

2.1 The Random Local Search

As the main subject for testing parameter control methods, we
consider the random local search with variable search radius 𝑘 ,
which we denote by RLS𝑘 . This is an algorithm for pseudo-Boolean
optimization, that is, in the space {0, 1}𝑛 of bit strings of length 𝑛.
It stores one individual 𝑥 that is initialized with a random bit string,
and in each iteration it creates an offspring 𝑦 by first choosing
radius of search 𝑘 and then flipping bits of 𝑥 in exactly 𝑘 positions
that are chosen uniformly at random. If the value of the optimized
function in 𝑦 is not worse than in 𝑥 , then 𝑦 replaces 𝑥 , and oth-
erwise 𝑥 stays the same. These iterations are repeated until some

Algorithm 1: The RLS𝑘 maximizing 𝑓 : {0, 1}𝑛 → R.
1 Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random;
2 while not stopped do

3 𝑠 ← 𝑆 (𝑥) ; // Computing the current state

4 𝑘 ← 𝑘 (𝑠) ; // Choosing 𝑘 based on 𝑠

5 𝑦 ← copy of 𝑥 ;
6 Flip 𝑘 bits in 𝑦 in positions chosen u.a.r.;
7 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then
8 𝑥 ← 𝑦;
9 end

10 end

stopping criterion is met. The pseudocode of the RLS𝑘 is shown in
Algorithm 1.

We do not specify the stopping criterion and assume that the
algorithm never stops before finding a global optimum of the opti-
mized function. We measure the performance of the algorithm as
the number of fitness evaluations that it makes before it evaluates
a global optimum for the first time, and we call it the algorithm’s
runtime. This is a random variable (due to the random choices
during the algorithm’s run), hence our main interest is in the ex-
pected runtime: the smaller it is, the better is the performance of
the algorithm.

The choice of the search radius in each iteration is made based
on the state of the algorithm in the beginning of that iteration.
The state of the algorithm at any time is defined by the current
individual 𝑥 , that is, we can consider the state as some function
𝑆 : {0, 1}𝑛 ↦→ S, where S is the state space. We discuss the state
spaces that we consider in Section 2.3.

Sometimes the algorithm has a limited set of search radii it can
use. We call this set a portfolio and denote it by K . By default, we
assume that K = [1..𝑛], that is, it includes all possible options, but
in Section 5 we study settings with limited portfolios.

In Sections 3.2 and 4.2 we also consider a modified version of
the RLS𝑘 which accepts new offspring only if it is strictly better
than the parent. That is, in line 7 of Algorithm 1 we use a strict
inequality sign. Although it does not usually make sense for the
real-world optimization (since it significantly shrinks the ability
of the algorithm to explore the search space), our goal is to make
a good testing ground for parameter control mechanisms, and we
observe that this selection yields a more notable benefit from richer
state space.

2.2 Fitness Functions

We consider fitness functions that are based on classic benchmarks
LeadingOnes and OneMax. LeadingOnes (LO for brevity) was
first proposed in [21]. It returns the size of the longest prefix con-
sisting only of one-bits in its arguments. More formally, for any bit
string 𝑥 ∈ {0, 1}𝑛 we have

LeadingOnes(𝑥) = LO(𝑥) =
𝑛∑︁
𝑖=1

𝑖∏
𝑗=1

𝑥𝑖 .

OneMax (OM for brevity) is the second benchmark that we use
in this work, and it simply returns the number of one-bits in its
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argument, that is,

OneMax(𝑥) = OM(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖 .

Another fitness function which we denote by (LO,OM) com-
bines both OneMax and LeadingOnes and for any bit sting 𝑥 it
returns a tuple (LO(𝑥),OM(𝑥)). When we compare two individu-
als based on this fitness function (in line 7 of Algorithm 1), these
tuples are compared in lexicographical order, that is, we first com-
pare the values of LeadingOnes, and if they are equal, then we
compare OneMax values. This function can also be represented
as a scalar function that returns (𝑛 + 1)LO(𝑥) + OM(𝑥), but we
prefer to consider it as a tuple, since it highlights the idea of having
LeadingOnes as the target function, and using OneMax just as an
auxiliary objective which helps the optimization when there is no
signal from the main objective.

We note that the RLS𝑘 can optimize (LO,OM) in𝑂 (𝑛 log𝑛) time,
which is asymptotically faster than the best possible runtime of
mutation-only algorithms on LeadingOnes, which is Ω(𝑛2) [20].
This upper bound for (LO,OM) follows from a simple observation
that the standard RLS that always flips one bit behaves on (LO,OM)
similar to OneMax: the fitness increases when it flips zero to one,
and the fitness decreases otherwise. Hence it essentially optimizes
OneMax and finds the optimum in Θ(𝑛 log(𝑛)) iterations in ex-
pectation. The performance of the RLS𝑘 with optimal policy for
choosing 𝑘 cannot be worse than this, hence it solves (LO,OM) in
𝑂 (𝑛 log(𝑛)) time.

We also note that it has been shown in [5] that OneMax can
help to optimize LeadingOnes when used as a secondary objective.
However this is quite an artificial combination of functions. In real-
world problems it is also necessary to detect helping objectives
among auxiliary objectives that might be available, which is often
solved with RL algorithms [4, 6]. For us, however, this artificiality
is not important, since the goal of our benchmarks is to make a
testing ground for dynamic methods of parameter configuration,
not for optimization algorithms.

2.3 State Spaces and Transition Probabilities

The RLS𝑘 chooses the search radius 𝑘 depending on the current
state of the algorithm that is defined by the current individual 𝑥 .
That is, the state space can be seen as a partition of the search space
into disjoint sets of bit strings, and each of these sets represents a
state of the algorithm. For any state 𝑠 we say that the RLS𝑘 is in 𝑠 ,
if the current individual 𝑥 belongs to 𝑠 . We consider three different
state spaces.

The first state space SLO is based solely on the LeadingOnes
values of the points in the search space. It consists of 𝑛 + 1 states
𝑠0, . . . , 𝑠𝑛 , and for all 𝑖 ∈ [0..𝑛] state 𝑠𝑖 consists of all bit strings 𝑥
with LO(𝑥) = 𝑖 . For this state space, we denote by 𝑝 𝑗

𝑖
(𝑘) (where

𝑖, 𝑗 ∈ [0..𝑛]) the probability that the RLS𝑘 creates an offspring
from 𝑠 𝑗 conditional on being in 𝑠𝑖 and flipping exactly 𝑘 bits. Note
that depending on the optimized function (just LeadingOnes or
(LO,OM)) the RLS𝑘 might either accept this offspring (and go to a
new state) or not accept it (and stay in the same state).

The second state space S (LO,OM) is based on both Leading-
Ones and OneMax. Its consists of states (𝑠𝑖, 𝑗 )𝑖, 𝑗∈[0..𝑛] , where state

𝑠𝑖, 𝑗 consists of all bit strings 𝑥 with LO(𝑥) = 𝑖 and OM(𝑥) = 𝑗 .
Since the OneMax value of any bit string cannot be less than its
LeadingOnes value, all states 𝑠𝑖, 𝑗 with 𝑖 > 𝑗 are empty. Also, since
OM(𝑥) = 𝑛 only for the all-ones bit string, states 𝑠𝑖,𝑛 with 𝑖 < 𝑛 are
also empty. In the rest of this paper we pretend that these empty
states do not exist. For this state space, we denote by 𝑝ℓ,𝑚

𝑖,𝑗
(𝑘) (where

𝑖, ℓ ∈ [0..𝑛], 𝑗 ∈ [𝑖 ..𝑛] and𝑚 ∈ [ℓ ..𝑛]) the probability that the RLS𝑘
creates an offspring from state 𝑠ℓ,𝑚 conditional on being in state
𝑠𝑖, 𝑗 and flipping exactly 𝑘 bits (again, it does not guarantee that the
RLS𝑘 goes to state 𝑠ℓ,𝑚 due to selection).

To compute 𝑝ℓ,𝑚
𝑖,𝑗
(𝑘), we note that when the algorithm is in state

𝑠𝑖, 𝑗 , the current individual 𝑥 starts with 1𝑖0 and then has exactly
𝑗 − 𝑖 one-bits in positions [𝑖 + 2..𝑛]. The positions of one-bits in the
suffix are distributed uniformly at random, which can be shown by
the arguments similar to [21] (roughly speaking, any combination
of positions is equiprobable, since any trajectory leading to 𝑠𝑖, 𝑗
does not give us information about suffix, except for the number
of one-bits in it). Keeping it in mind, we distinguish two cases of
computing 𝑝ℓ,𝑚

𝑖,𝑗
(𝑘).

First, when ℓ = 𝑖 , then 𝑝ℓ,𝑚
𝑖,𝑗
(𝑘) is the probability that we flip

𝑘 bits so that (i) we do not flip bits in positions [1..𝑖 + 1] (the LO
value stays the same) and (ii) in positions [𝑖 + 2..𝑛] we flip 𝑘0 zero-
bits and 𝑘1 one-bits so that the change of OM value 𝑘0 − 𝑘1 is
exactly𝑚 − 𝑗 , which together with 𝑘0 +𝑘1 = 𝑘 (which follows from
(i)) implies that 𝑘0 =

𝑚− 𝑗+𝑘
2 . The probability of (i) is

(𝑛−𝑖−1
𝑘

)
/
(𝑛
𝑘

)
,

and conditional on (i), 𝑘0 follows the hyper-geometric distribution
HG(𝑛 − 𝑖 − 1, 𝑛 − 𝑗 − 1, 𝑘), hence

𝑝
𝑖,𝑚
𝑖,𝑗
(𝑘) =

(𝑛−𝑖−1
𝑘

)(𝑛
𝑘

) ·

(𝑛− 𝑗−1
𝑚− 𝑗+𝑘

2

) ( 𝑗−𝑖
𝑘−𝑚− 𝑗+𝑘

2

)(𝑛−𝑖−1
𝑘

) =

(𝑛− 𝑗−1
𝑚− 𝑗+𝑘

2

) ( 𝑗−𝑖
𝑘−𝑚+𝑗

2

)(𝑛
𝑘

) .

When ℓ ≥ 𝑖 , then 𝑝ℓ,𝑚
𝑖,𝑗
(𝑘) is the probability that we flip 𝑘 bits so

that (i) we do not flip bits in positions [1..𝑖] and flip a zero-bit in
position 𝑖 + 1 (the LO value increases), (ii) we flip 𝑘0 =

𝑚− 𝑗+𝑘−1
2

zero-bits in positions [𝑖 + 2..𝑛] and (iii) after it we get one-bits in
positions [𝑖 + 2..ℓ] and a zero-bit in position ℓ + 1. The probabilities
of (i) and (ii) can be computed as in the previous case for ℓ = 𝑖 ,
with the only change that we must flip the zero-bit in position 𝑖 + 1,
and hence we flip 𝑘 − 1 bits in the suffix [𝑖 + 2..𝑛]. For estimating
the probability of (iii) we note that conditional on (i) and (ii) we
have 𝑚 − 𝑖 − 1 one-bits in positions [𝑖 + 2..𝑛], and the positions
of these one-bits are distributed uniformly at random, as we have
discussed. Therefore, the probability that the new LO value is ℓ is
the probability that the bits in positions [𝑖 + 2..ℓ] are one-bits and
the bit in position ℓ +1 is a zero-bit, that is

(𝑛−ℓ−1
𝑚−ℓ

)
/
(𝑛−𝑖−1
𝑚−𝑖−1

)
. Hence,

we have

𝑝
𝑖,𝑚
𝑖,𝑗
(𝑘) =

(𝑛−𝑖−1
𝑘−1

)(𝑛
𝑘

) ·

( 𝑛− 𝑗−1
𝑚− 𝑗+𝑘−1

2

) ( 𝑗−𝑖
(𝑘−1)−𝑚− 𝑗+𝑘−1

2

)(𝑛−𝑖−1
𝑘−1

) ·
(𝑛−ℓ−1
𝑚−ℓ

)(𝑛−𝑖−1
𝑚−𝑖−1

)
=

( 𝑛− 𝑗−1
𝑚− 𝑗+𝑘−1

2

) ( 𝑗−𝑖
𝑘−1−𝑚+𝑗

2

)(𝑛
𝑘

) ·
(𝑛−ℓ−1
𝑚−ℓ

)(𝑛−𝑖−1
𝑚−𝑖−1

) .
The third state space S𝑥 is the largest one: each point in

the search space corresponds to its unique state. That is, for each
𝑥 ∈ {0, 1}𝑛 there exists a state 𝑠𝑥 , and this state consists of the
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single search point 𝑥 . When we consider the RLS𝑘 in this state
space, it essentially means that it can choose 𝑘 based on the bit
string 𝑥 , but not only on its LO and OM values, which should give
the best opportunities for a proper selection of the parameters. For
any pair of bit strings 𝑥 and𝑦 by 𝑝𝑥→𝑦 (𝑘) we denote the probability
to create 𝑦 via a 𝑘-bits flip from 𝑥 . Since the 𝑘 bits to flip are chosen
uniformly at random, this probability is

𝑝𝑥→𝑦 (𝑘) =
{(𝑛

𝑘

)−1
, if 𝐻 (𝑥,𝑦) = 𝑘

0, if 𝐻 (𝑥,𝑦) ≠ 𝑘.

2.4 Problem Statement

The main goal of this paper is to design new benchmarks with rich
state spaces for analysis of parameter control methods. For this
we also want to find the optimal policies 𝜋 : S ↦→ K of choosing
parameters from portfolio depending on the current state to use as
a reference for tested DAC and parameter control methods. We also
aim to understand how state information that goes beyond only
the current fitness knowledge can help to choose better parameters.
To achieve these goals, we propose four benchmark settings for
choosing search radius 𝑘 in the RLS𝑘 . These settings are listed in
Table 1.

Fitness function Offspring selection State information

(LO,OM) Non-strict LO (x), OM (x)

Strict bit string 𝑥

LeadingOnes Non-strict LO (x), OM (x)

Strict LO (x), OM (x)
Table 1: The four proposed benchmark settings.

Benchmarks that include optimization on (LO,OM) also help
us to study the effect of using additional information about the
problem for selection, while in settings with LeadingOnes we
restrict the usage of the additional information and only use it to
choose 𝑘 .

In the next two sections we show how to compute the optimal
policies for these settings and discuss how it can be used for analysis
of DAC methods.

3 OPTIMIZATION OF (LO,OM)
In this section, we study the proposed benchmarks where the op-
timized function is (LO,OM) and the state spaces are S (LO,OM)
(when we can choose 𝑘 based on the current fitness) and S𝑥 (when
we can choose 𝑘 based on the current bit string 𝑥 ). We describe the
ways to compute the optimal policies for choosing 𝑘 depending on
the current state precisely and show the runtime which these poli-
cies yield. The main insight from this section is that the additional
information used by the optimizer both for parameter selection and
for offspring selection can be very beneficial for optimization, even
reducing the runtime asymptotically.

Before we start, it is important to note that when the RLS𝑘
optimizes (LO,OM), it never decreases the LO value of its current
individual 𝑥 , and it also never decreases OM value when keeping

the same LO value. This observation allows us to define the order
of states in S (LO,OM) , where we say that state 𝑠𝑖, 𝑗 > 𝑠ℓ,𝑚 if either
𝑖 > ℓ or if 𝑖 = ℓ and𝑚 > 𝑗 . With this order, the RLS𝑘 can only go
from 𝑠𝑖, 𝑗 to 𝑠ℓ,𝑚 , if and only if 𝑠𝑖, 𝑗 ≤ 𝑠ℓ,𝑚 .

3.1 State Space of LO and OM Values

In this section we use S (LO,OM) state space for choosing the search
radius 𝑘 . We first compute the optimal policy for this setting, then
compare it with some other sub-optimal policies and then also
compare the runtimes that these policies yield.

Computation of the optimal policy. Before we show the
optimal policy of choosing 𝑘 , we describe how we can compute
the expected runtimes when we know the policy of choosing
𝑘 for all states in S (LO,OM) . Assume that we have a set 𝐾 =

(𝑘𝑖, 𝑗 )𝑖∈[0..𝑛−1], 𝑗∈[𝑖 ..𝑛−1] , and a policy which chooses 𝑘 = 𝑘𝑖, 𝑗 when
the RLS𝑘 in state 𝑠𝑖, 𝑗 for all 𝑖 and 𝑗 (recall that states with 𝑗 < 𝑖 and
states with 𝑖 < 𝑛 ∧ 𝑗 = 𝑛 do not exist, and the state with 𝑖 = 𝑗 = 𝑛

is the optimal state, hence it does not matter how many bits we flip
in it). Let also, for all 𝑖 ∈ [0..𝑛 − 1] and 𝑗 ∈ [𝑖 ..𝑛 − 1] 𝑇𝑖, 𝑗 (𝐾), be
the number of iterations it takes the RLS𝑘 to reach the all-ones bit
string when starting in state 𝑠𝑖, 𝑗 and flipping bits according to the
policy defined by𝐾 . We also define𝑇𝑛,𝑛 (𝐾) = 0 for any𝐾 . Then, we
can use the order of the states of S (LO,OM) to compute the expected
runtimes for each space.

We start by computing the runtime for state 𝑠𝑛−1,𝑛−1. If the
algorithm is in this state, then the current bit string 𝑥 must be 1𝑛−10
(that is, 𝑛−1 ones followed by a single zero). Hence, if 𝑘𝑛−1,𝑛−1 = 1,
the algorithm generates the optimumwith probability 1

𝑛 by flipping
the only zero-bit, and the expected runtime is 𝐸 [𝑇𝑛−1,𝑛−1 (𝐾)] = 𝑛.
Otherwise, if 𝑘𝑛−1,𝑛−1 ≠ 1, then the algorithm cannot leave the
state, since it can only decrease the LO value with two- or more-bits
flips. Hence, 𝐸 [𝑇𝑛−1,𝑛−1 (𝐾)] = +∞.

After finding 𝐸 [𝑇𝑛−1,𝑛−1 (𝐾)], we can compute the expected
runtimes for all other states, iterating through them in descending
order. Consider computation of 𝐸 [𝑇𝑖, 𝑗 (𝐾)] assuming that we have
already computed the expected runtimes for states that are larger
than 𝑠𝑖, 𝑗 (according to the order defined in the beginning of this
section). Define 𝑝leave as the probability of leaving state 𝑠𝑖, 𝑗 in
one iteration when flipping 𝑘𝑖, 𝑗 bits. Then if 𝑝leave = 0, we have
𝐸 [𝑇𝑖, 𝑗 (𝐾)] = +∞, as we never leave state 𝑠𝑖, 𝑗 . Otherwise, if 𝑝leave >
0, then the following equation on the expected runtimes and its
transformations allow us to compute 𝐸 [𝑇𝑖, 𝑗 (𝐾)].

𝐸 [𝑇𝑖, 𝑗 (𝐾)] = 1 +
∑︁

(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

+ (1 − 𝑝leave)𝐸 [𝑇𝑖, 𝑗 (𝐾)];

𝑝leave𝐸 [𝑇𝑖, 𝑗 (𝐾)] = 1 +
∑︁

(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)];

𝐸 [𝑇𝑖, 𝑗 (𝐾)] =
1 +∑(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗 𝑝

ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

𝑝leave
.

(1)

The probability 𝑝leave of leaving the state is the sum of the transition
probabilities from 𝑠𝑖, 𝑗 to all larger states, including the optimal state
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Figure 1: An example heatmap showing the optimal search

radii (left) and the optimal runtimes (right) for the RLS𝑘

optimizing (LO,OM) with 𝑛 = 8 which can choose the search

radius 𝑘 based on the (LO,OM) value (that is, based on its

state from state space S (LO,OM) ).

𝑠𝑛,𝑛 , that is,

𝑝leave =
∑︁

(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 ) .

This approach also allows us to find the best values of 𝑘𝑖, 𝑗 deduc-
tively. Assume that we have already computed the optimal values
of 𝑘 for all states larger than 𝑠𝑖, 𝑗 . Then to find the best 𝑘𝑖, 𝑗 we need
to compute eq. (1) for all available values of 𝑘𝑖, 𝑗 and choose the one
that minimizes 𝐸 [𝑇𝑖, 𝑗 (𝐾)].

Comparison of different policies. To illustrate the optimal
policy 𝐾 that we computed and the runtimes that this policy yields,
we use heatmaps. A small example is shown in Figure 1. In this
figure, the left plot shows a heatmap of the optimal rates in the
S (LO,OM) state space. Each state of the algorithm is defined by the
current LO value (Y-axis) and OM value (X-axis). The numbers show
the optimal number of bits to flip in each state, and it is also shown
via colors: the darker squares mean lower search radii. We will omit
precise numbers in larger figures. The right plot shows the expected
runtimes for each state, that is, how much time the RLS𝑘 would
need to find the all-ones bit string if it starts in each state. As one
can see in this figure, the easiest state is (0, 0) (since we exclude the
state (𝑛, 𝑛) with the optimum), from which the algorithm can find
the optimum in one iteration by flipping all bits, while it takes the
algorithm the most time to find the optimum, when it starts with
LO = OM = 3 : the brighter regions correspond to larger runtimes.

Figure 2 shows similar heatmaps for larger problem size 𝑛 =

128. We see in this figure that in most states when OM > 𝑛
2 it is

optimal to flip only one bit. This gives the algorithms the best ability
to optimize OneMax without decreasing its value (e.g., when it
improves LO value). This is different for states with low LO value
and with OM < 0.4𝑛: there it is better to flip lots of bits, since
hopefully it can bring us to a much better state in one iteration. The
expected runtimes also reflect that the algorithms tend to optimize
OM, even though it is the second objective: the gradient of color
goes almost parallel to X axis. The trajectories of ten runs also
support the observation that the algorithm tries to optimize OM
first. We see that at start the trajectories go right and slightly up,
but then, when the tail of the algorithm is full of one-bits, we see
large improvements in LO values as the trajectories go steeply up.

We also see that the hardest state to start the run is when LO ≈ 𝑛/3
and OM ≈ LO (that is, we have many zero-bits in the tail).

In Figure 3, we present similar heatmaps for a policy when 𝑘 is
always one for comparison. Similar to the runs with optimal policy
𝐾 , the trajectories first increase OM fast, and then do several large
jumps up. Note that in this case the algorithm cannot decrease OM:
even if it increases LO value, it does it by flipping one zero-bit, hence
it increases OM as well. This means that with always-one-bit-flip
policy the algorithm behaves absolutely the same as on OneMax
(which also implies that its expected runtime is (1 ± 𝑜 (1))𝑛 ln(𝑛)).
We also find it interesting to show also algorithm’s behavior when it
chooses rates that are optimal for the optimization of LeadingOnes
as theywere shown in [9, 15]. In our notation they are rates from the
SLO state space, but theymight be sub-optimal whenwe use OM for
offspring selection. This case is shown in Figure 4. These rates are
more than one for all LO < 𝑛

2 , and it results in steeper trajectories.
We conjecture that with such high rates it is much harder for the
algorithm to optimize OneMax without decreasing LO value, and
for this reason it is slower in the first half of optimization.

Comparison of runtimes. When we know all expected run-
times conditional on starting in each state, we can also compute the
total expected runtime, which takes into account the initialization
with a random bit string 𝑥0. For this we can use the law of total
expectation. To compute the probability that we start in state 𝑠𝑖, 𝑗
we first compute the probability to start with OM(𝑥0) = 𝑗 , which
is
(𝑛
𝑗

)
2−𝑛 , since OM(𝑥0) follows a binomial distribution Bin(𝑛, 12 ).

Conditional on that, we note that there are
(𝑛
𝑗

)
ways to choose 𝑗

positions for one-bits (each of these ways has the same probabil-
ity), and only

(𝑛−𝑖−1
𝑗−𝑖

)
of them start with 1𝑖0 (which is the same as

having LO(𝑥0) = 𝑖), hence the probability to start in state 𝑠𝑖, 𝑗 is

(
𝑛

𝑗

)
2−𝑛 ·

(𝑛−𝑖−1
𝑗−𝑖

)(𝑛
𝑗

) =

(
𝑛 − 𝑖 − 1
𝑗 − 𝑖

)
2−𝑛 .

To compare the performance of the approaches we used, in
Figure 5 we show the plots of the total expected runtime of the
RLS𝑘 using the computed radii depending on problem size 𝑛. Those
runtimes are normalized by 𝑛 ln(𝑛), since this is the asymptotical
runtime when we always flip one bit, as we discussed before. This
normalization helps us better see the difference between the per-
formances of algorithms. We observe that the mutation rates that
are optimal for LeadingOnes are clearly not optimal for this func-
tion, and they yield runtime which is likely to be asymptotically
larger than 𝑛 ln(𝑛). The runtime with the optimal policy which we
computed is very similar to the runtime with only one-bit flips,
however it is notably better. We assume that it is impossible to get
a large advantage over the one-bit-flips policy, since the algorithm
quickly gets into states, where it is optimal to flip one-bits (with
OM(𝑥) > 𝑛/2). However, the difference in the optimization speed
at the very beginning of the process exists. It makes this bench-
mark an interesting and challenging testing ground for learning
algorithms, since they need to learn the optimal rates having such
a small reward for that.
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Figure 2: Heatmaps for the RLS𝑘 on (LO,OM) using state space S (LO,OM) : optimal search radii (left), expected runtimes (middle)

and trajectories of 10 typical runs over the optimal rates heatmap (right). The problem size is 𝑛 = 128.
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Figure 3: Heatmaps for the the RLS (always flipping one bit) on (LO,OM): expected runtimes (left) and trajectories of 10 typical

runs over the runtimes heatmap (right). The problem size is 𝑛 = 128.
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Figure 4: Heatmaps for the RLS𝑘 on (LO,OM) that chooses radii optimal for LeadingOnes optimization in state space SLO:
optimal search radii (left), expected runtimes (middle) and trajectories of 10 typical runs over the optimal rates heatmap (right).

The problem size is 𝑛 = 128.

3.2 State Space of Bit Strings

In this subsection, we discuss the optimal policy for the state
space S𝑥 , that is, when we can choose 𝑘 depending on the cur-
rent bit string, but not only on its fitness value. Our goal is to find
𝐾 = (𝑘𝑥 )𝑥∈{0,1}𝑛\{1𝑛 } that minimizes the expected runtime. More
precisely, for all 𝑥 ∈ {0, 1}𝑛 let 𝑇𝑥 (𝐾) be the number of iterations

that it takes the RLS𝑘 to find the all-ones bit string when it starts
in 𝑥 and chooses the search radii in each state according to 𝐾 . Let
also 𝑝𝑠 (𝑥) be the probability to start in bit string 𝑥 . Then the total
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differences between algorithms.

expected runtime is

𝐸 [𝑇 ] =
∑︁

𝑥∈{0,1}𝑛
𝑝𝑠 (𝑥)𝐸 [𝑇𝑥 (𝐾)],

and we aim at finding 𝐾 that minimizes it.
The main difficulty in this case is in the possibility of transitions

between bit strings that belong to the same state in S (LO,OM) . This
means that there are loops in the search space that complicate the
computation of optimal 𝐾 (similar to what we will encounter in
Section 4, but much harder to solve due to the large size of the state
space). Since our aim is to design benchmarks for which it is easy to
compute the optimal 𝐾 , we want to avoid such difficulties. Hence,
we use the RLS𝑘 with strict selection, that is, we assume that in
line 7 of Algorithm 1 the inequality is strict. This implies that for
any bit string 𝑦 that belongs to a state 𝑠𝑖, 𝑗 ∈ S (LO,OM) the expected
runtime 𝐸 [𝑇𝑦 (𝐾)] depends only on the runtimes 𝐸 [𝑇𝑧 (𝐾)] for bit
strings 𝑧 from strictly larger states in S (LO,OM) than 𝑠𝑖, 𝑗 , but not
from 𝑠𝑖, 𝑗 itself. Hence, we can compute the expected runtimes for
all states in S𝑥 if we do it in order that corresponds to a descending
order of states in S (LO,OM) (and it does not matter in which order
we compute runtimes for bit strings inside the same 𝑠𝑖, 𝑗 ). Namely,
similar to eq. (1), considering an arbitrary bit string 𝑥 from some
state 𝑠𝑖, 𝑗 ∈ S (LO,OM) and defining 𝑝leave as the probability to leave
this bit string, we obtain

𝐸 [𝑇𝑥 (𝐾)] = 1 +
∑︁

(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗

∑︁
𝑦∈𝑠ℓ,𝑚

𝑝𝑥→𝑦 (𝑘𝑥 )𝐸 [𝑇𝑦 (𝐾)]

+ (1 − 𝑝leave)𝐸 [𝑇𝑥 (𝐾)];

𝐸 [𝑇𝑥 (𝐾)] =
1 +∑(ℓ,𝑚) :𝑠ℓ,𝑚>𝑠𝑖,𝑗

∑
𝑦∈𝑠ℓ,𝑚 𝑝𝑥→𝑦 (𝑘𝑥 )𝐸 [𝑇𝑦 (𝐾)]
𝑝leave

.

Using this equation, we can compute the optimal policy for each
bit string 𝑥 in the search space by trying all values of 𝑘𝑥 that can
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Figure 6: Optimal rates of the RLS𝑘 on (LO,OM) for 𝑛 = 16.
The states in which some bit strings have a different optimal

rate in S𝑥 are marked with red crosses.

give progress for this bit string and finding the one whichminimizes
𝑇𝑥 (𝐾). However, since the search space grows exponentially with
the growth of the problem size 𝑛, the maximum 𝑛 for which we
could compute the optimal rates is 𝑛 = 16. For this problem size
𝑛 = 16 we have found that for most bit strings their optimal search
radius was the same as in S (LO,OM) (but with a standard non-strict
selection used in the RLS𝑘 ). Figure 6 shows the optimal rates for
S (LO,OM) for 𝑛 = 16 and marks the cells, where there are bit strings
with a different optimal radius. There are only four states for which
there is a difference in optimal rates, and all those states are in areas
where the optimal rate in S (LO,OM) changes most quickly (that is
reflected with the strongest gradient in the heatmap).

The results of this section indicate that we do not benefit much
from having information about the precise bit string, and the opti-
mal rates for almost all bit strings are the same as in the state space
S (LO,OM) . Nevertheless, due to the large state space this is a very
interesting setting for testing learning agents. Moreover, for such a
large state space the set of close-to-optimal rates that we can use
as a baseline can be computed as in Section 3.1, which can be done
relatively fast even for extremely large state space S𝑥 .

4 OPTIMIZATION OF LEADINGONES

As it has been mentioned, it is well-known from [9, 15] that
the optimal fitness-dependent mutation rate for LeadingOnes is
𝑘 = ⌊ 𝑛

LO(𝑥 ) ⌋, where 𝑥 is the current individual, hence we use this
setting as a baseline. The heatmaps describing this case are shown
in Figure 7.

In this section we introduce two benchmarks based on RLS𝑘
optimizing LeadingOnes (without additional OM information for
offspring selection) and using S (LO,OM) state space (that is, we can
choose 𝑘 based on the current LO and OM values). The difference
between the two benchmarks is in the selection used in the RLS𝑘 : in
one case it is standard selection which accepts offspring that are not
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Figure 7: Heatmaps for the RLS𝑘 on LeadingOnes with optimal LO-based search radii: the radii themselves (left), expected

runtimes (middle) and trajectories of 10 typical runs over the optimal rates heatmap (right). The problem size is 𝑛 = 128.
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Figure 8: Heatmaps for the RLS𝑘 on LeadingOnes with approximated optimal policy based on the S (LO,OM) state space: optimal

search radii (left), expected runtimes (middle) and trajectories of 10 typical runs over the optimal rates heatmap (right). The

problem size is 𝑛 = 128.
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Figure 9: Heatmaps for the RLS𝑘 with strict selection on LeadingOnes with optimal policy based on the S (LO,OM) state space:
optimal search radii (left), expected runtimes (middle) and trajectories of 10 typical runs over the optimal rates heatmap (right).

The problem size is 𝑛 = 128.

worse than the parent, and in the second case it is strict selection
that accepts only strictly improving offspring. The main question
we aim to answer in this section is if introducing an additional
information (in our case, the current OneMax value) can help RLS𝑘
to choose better radii in some states and if such choices can affect

the optimization time enough for the learning methods to be able
to find the optimal rates.
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4.1 Standard Selection

We start with computing the optimal radius for each state in
S (LO,OM) state space for the standard non-strict selection. This
is not a trivial task. The algorithm’s selection is now not based on
the value of OneMax, hence it can make loops in the state space
inside one LeadingOnes level. This implies that there is no order
of states so that the algorithm could only go from smaller states to
larger states, which does not allow us straightforwardly compute
the best rates as we did it in Section 3. Instead, we use the following
approach.

Similar to Section 3.1, let 𝑇𝑖, 𝑗 (𝐾) be the expected runtime when
we start from state 𝑠𝑖, 𝑗 and use policy 𝐾 . Assume that we have
computed optimal rates and runtimes for all LeadingOnes levels
above some arbitrary level 𝑖 ∈ [0..𝑛 − 1]. Then let 𝐾 be some fixed
policy with optimal rates 𝑘ℓ,𝑚 for all ℓ > 𝑖 and some arbitrary fixed
rates for all other states. We can compute the expected runtimes
for all states with LO = 𝑖 by solving a system of 𝑛 − 𝑖 linear equa-
tions, where each equation corresponds to one of these states. The
equation corresponding to 𝑠𝑖, 𝑗 is as follows.

𝐸 [𝑇𝑖, 𝑗 (𝐾)] = 1 +
𝑛∑︁
ℓ=𝑖

𝑛∑︁
𝑗=ℓ

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

+ (1 − 𝑝leave)𝐸 [𝑇𝑖, 𝑗 (𝐾)];

𝑝leave𝐸 [𝑇𝑖, 𝑗 (𝐾)] −
𝑛∑︁
𝑗=𝑖

𝑝
𝑖,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇𝑖,𝑚 (𝐾)]

= 1 +
𝑛∑︁

ℓ=𝑖+1

𝑛∑︁
𝑗=ℓ

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)] .

(2)

Left side of the last equations contains the expected runtimes for the
states with LO value 𝑖 (that we want to compute now), while in the
right side we gather the terms from higher LO levels, which by our
assumption is already computed and is optimal. Solving this system
gives us expected runtimes for states 𝑠𝑖,𝑖 , . . . , 𝑠𝑖,𝑛−1 and for policy
𝐾 , however to find the best policy we need to check all possible
combinations of values of 𝑘𝑖,𝑖 , . . . , 𝑘𝑖,𝑛−1, which is extremely time-
consuming. Even if we do not check 𝑘 > 𝑛 − 𝑖 (since this number
of bits flipped reduces LO value with probability one), the number
of different combinations is (𝑛 − 𝑖) (𝑛−𝑖 ) . It is also not clear if the
optimal policy exists in this case: it might happen that one policy
minimizes runtime in one state, while another policy minimizes it
in another.

To tackle this problem we developed the following heuristic
method of computing the optimal rates. We first set all 𝑘𝑖, 𝑗 = 1 (for
all 𝑗 ∈ [𝑖 ..𝑛−1]) and find the first approximation of the optimal run-
times by solving system of equations as in eq. (2). Let the resulting
expected runtimes be 𝑇 (0)

𝑖,𝑖
, . . . ,𝑇

(0)
𝑖,𝑛−1. Then for each 𝑗 ∈ [𝑖 ..𝑛 − 1]

in eq. (2) we replace all 𝐸 [𝑇𝑖,𝑚 (𝐾)] (𝑚 ≠ 𝑗 ) with corresponding
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Figure 10: The expected runtimes of the RLS𝑘 on Leading-

Ones with different methods of selecting the search radius.

The runtimes are normalized by 𝑛2. Note that the minimum

𝑦 value is not zero, it is made for a better visibility of the

differences between algorithms.

𝑇
(0)
𝑖,𝑚

and obtain

𝐸 [𝑇𝑖, 𝑗 (𝐾)] =
1

𝑝leave
·
(
1 +

𝑛∑︁
𝑗=𝑖

𝑝
𝑖,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝑇 (0)𝑖,𝑚

(𝐾)

+
𝑛∑︁

ℓ=𝑖+1

𝑛∑︁
𝑗=ℓ

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

)
.

We now can find the value of 𝑘𝑖, 𝑗 that minimizes this expression
of 𝐸 [𝑇𝑖, 𝑗 (𝐾)] by trying all values from the portfolio. After finding
all 𝑘𝑖, 𝑗 we re-solve the system and obtain a new approximation of
optimal runtimes 𝑇 (1)

𝑖,𝑖
, . . . ,𝑇

(1)
𝑖,𝑛−1. We repeat this process until all

values of 𝑘𝑖, 𝑗 are not changed after an iteration of this process (that
is, the process converged to some vector of 𝑘-s). In each iteration
we need to check (𝑛− 𝑖) values for each of (𝑛− 𝑖) values 𝑘𝑖, 𝑗 , hence
we check (𝑛 − 𝑖)2 different vectors combinations if 𝑘𝑖, 𝑗 . This turns
to be much faster than the brute force search, and it takes at most
5 iterations for the process to converge for problem sizes that we
tried (up to 𝑛 = 256).

The heatmaps showing the search radii that are computed with
this method, expected runtimes they yield and trajectories of typical
runs are shown in Figure 8. The picture is very similar to Figure 7.
In particular, in this figure we see that the trajectory of runs is well
concentrated around states with OM = 𝑛+LO

2 , that is, where we
have approximately half ones and half zeros in the suffix. In those
states the optimal rates are almost always the same as the optimal
rates based only on LeadingOnes value from [9, 15]. This leads
to the minimal difference from the performance gain from using
OM value to choose 𝑘 . This is illustrated in Figure 10, where we
compare the runtimes with optimal rates based only on LO value
(SLO state space) and based on LO and OM values (S (LO,OM) state
space).

4.2 Strict Selection

To overcome the computation complexity of the optimal S (LO,OM)
policy for the LO objective, we also consider a setting with strict
selection embedded into RLS𝑘 . In contrast with the previous subsec-
tion, it creates an order of states: the algorithm can transition from
state 𝑠𝑖, 𝑗 to state 𝑠ℓ,𝑚 only if ℓ > 𝑖 (independently of OM values 𝑗

9
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Figure 11: The expected runtimes of the RLS𝑘 on Leading-

Ones with optimal search radii for strict and non-strict off-

spring selection. The runtimes are normalized by 𝑛2. Note
that the minimum 𝑦 value is not zero, it is made for a better

visibility of the differences between algorithms.

and𝑚). This allows us to use a method of computing the expected
runtimes similar to the one from Section 3.1. We now have the
following equation for the expectation of 𝑇𝑖, 𝑗 (𝐾) which is similar
to eq. (1).

𝐸 [𝑇𝑖, 𝑗 (𝐾)] = 1 +
𝑛−1∑︁
ℓ=𝑖+1

𝑛−1∑︁
𝑚=ℓ

𝑝
ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

+ (1 − 𝑝leave)𝐸 [𝑇𝑖, 𝑗 (𝐾)];

𝐸 [𝑇𝑖, 𝑗 (𝐾)] =
1 +∑𝑛−1

ℓ=𝑖+1
∑𝑛−1
𝑚=ℓ 𝑝

ℓ,𝑚
𝑖,𝑗
(𝑘𝑖, 𝑗 )𝐸 [𝑇ℓ,𝑚 (𝐾)]

𝑝leave
.

(3)

Note that there is no term for state 𝑠𝑛,𝑛 in this equation, since
𝐸 [𝑇0,0 (𝐾)] = 0, but the transition probability 𝑝𝑛,𝑛

𝑖, 𝑗
(𝑘𝑖, 𝑗 ) is included

into 𝑝leave.
With eq. (3) we can compute the optimal rates and the expected

runtimes for each state. We illustrate them with heatmaps in Fig-
ure 9 for problem size𝑛 = 128. In this figure one can see a significant
difference in the optimal rates, runtimes and behavior of the RLS𝑘
compared to the standard selection (Figure 8). The first interesting
trend that we observed is that the optimal 𝑘 is 𝑘𝑖, 𝑗 = 1 for all states
with OM value 𝑗 ≥ 96, and it is larger than one for all other states.
This is also reflected in expected runtimes: we observe a gradient
along the𝑋 -axis in this one-bit-flip area, but no such gradient along
the 𝑌 -axis, as was seen in Figure 8. This is because once the RLS𝑘
is in the zone of one-bit flips, it can only replace the parent 𝑥 by
flipping the first zero-bit in it. Hence, each replacement of the par-
ent takes 𝑛 iterations in expectation and it always increases OM
value by one. Consequently, the expected time until the algorithm
finds the optimum starting in a state 𝑠𝑖, 𝑗 from this one-bit-flip zone
is exactly 𝑗𝑛, that is, it is the same for all states with the same OM
value.

Another notable difference with standard offspring selection
is that the total expected runtime with strict selection is notably
smaller, which is illustrated in Figure 11. While it looks like the
relative difference decreases as the problem size grows, it seems to
be large enough to give a good signal to learning agents.

It is also interesting to mention that the worst-case initial states
are very similar to the worst-case states for optimizing (LO,OM):
they are the states with OM ≈ LO ≤ 𝑛

3 , with the worst state being

𝑠41,41. The expected runtime for that state is 7469.51 iterations,
which is larger than for the worst-case starting state for standard
selection, which is 6362.68 (for state 𝑠3,3). This is surprising in
the light of the total expected runtime being better for the strict
selection.

We conjecture that the reason for the advantage of the strict
selection can be explained as follows. When the RLS𝑘 uses standard
selection, it can change the OM value without improving LO value.
It leads to the drift of OM value towards 𝑛+LO(𝑥 )

2 , that is, towards
the equal number of ones and zeros in the tail. This drift is strong
enough for the algorithm to reach this area before creating an
individual with better LO value, which means that essentially we
always use the optimal rates for those states for improvements, and
those rates are very similar to the optimal rates based only on LO
value. With strict selection, if at some point the OM value fluctuates
from 𝑛+LO(𝑥 )

2 , it stays there until we improve LO value. In the
very early stages of optimization such fluctuations towards smaller
number of one-bits lead us to the area where we can get large
progress with many-bit flips (the bottom left area in the heatmaps
in Figure 11), and in slightly later stages of optimization it can lead
us to the one-bit-flip area on the right, where the algorithm does
not lose the accumulated one-bits in the suffix of 𝑥 .

These observations create a very interesting landscape of optimal
rates and of the behavior of the algorithm, which is a promising
testing ground for learning mechanisms.

5 LIMITED PORTFOLIO

Lastly, we calculated the expected runtime for the RLS𝑘 with stan-
dard selection optimizing (LO,OM) when only a limited portfo-
lio of search radii is available. Taking inspiration from the paper
by Biedenkapp et al. [2] where limited portfolios are used to train
the RL-agent, we computed the exact runtime for the portfolios
consisting of powers of two, i.e., {2𝑖 | 2𝑖 ≤ 𝑛}, initial segment with
3 elements, i.e., [1..3], and evenly spread portfolio with 3 elements,
i.e., {1, ⌊𝑛3 ⌋, ⌊

2𝑛
3 ⌋}.

The best possible runtimes of the RLS𝑘 with these portfolios are
shown in Figure 12. We computed them in the similar way as in
Section 3.1. It is interesting to note that the portfolio choice does
not seem to strongly affect the performances, and the difference
between normalized runtimes decreases with the growth of prob-
lem size, however we can see that portfolio {1, 2, 3} has the worst
performance. It is likely because it does not have large radii that
are beneficial in the early steps of the optimization.

6 SUMMARY OF THE RESULTS

In this work we proposed the four benchmarks that are described
in Table 2. For the results based on LeadingOnes function (with no
clues for offspring selection, see Section 4) we observed that adding
additional information can improve the runtime by allowing the
algorithm to make better choices. These choices, however, have a
limited effect on the performance, since typically the algorithm’s
trajectory goes through the states with OM ≈ 𝑛+LO

2 . This effect of
the extended state space can be amplified by using strict offspring
selection in RLS𝑘 , since it allows the algorithm to stay longer in
marginal states where OM value is further away from 𝑛+LO

2 and
where a non-typical search radius can be beneficial.
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Fitness function Offspring selection State space Description Max 𝑛 computed

(LO,OM) Non-strict S (LO,OM)
We can compute the optimal policy precisely in polynomial
time. The optimal policy is shown in Figure 2 and it gives a
better runtime that one-bit-flip policy.

𝑛 = 256

Strict S𝑥
The state is exponentially big, we cannot effectively compute
the policy. For 𝑛 = 16 almost always the optimal search radius
is the same as for state space S (LO,OM) .

𝑛 = 16

LeadingOnes Non-strict S (LO,OM)

We cannot effectively compute the optimal policy, but can ap-
proximate it by relaxing the optimal values of 𝑘 iteratively for
each LO value. The resulting rates are shown in Figure 8. We
get a slightly better runtime than with optimal search radii that
depend only on LO.

𝑛 = 256

Strict S (LO,OM)
We can compute the optimal policy in polynomial time. It
is shown in Figure 9. The resulting runtime has a better-
pronounced advantage over the LO-based optimal policy.

𝑛 = 16

Table 2: The summary of the proposed benchmarks. The last column indicates for which maximum 𝑛 we computed the optimal

policy. Note that in the paper most heatmaps are for 𝑛 = 128, which is not the maximum one, but it better illustrates some

details.
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Figure 12: The expected runtimes of the RLS𝑘 on (LO,OM)
with different portfolios. The runtimes are normalized by

𝑛 ln(𝑛). Note that the minimum 𝑦 value is not zero, it is made

for a better visibility of the differences between algorithms.

Studying (LO,OM), which uses additional hints from OneMax
in offspring selection, we first computed optimal rates as a baseline.
These rates resulted into 𝑂 (𝑛 log(𝑛)) runtime of the algorithm,
slightly improving the policy of always flipping one bit.Whatmakes
this setting interesting for testing DAC methods is the huge decline
of performance which we observed when chose non-optimal policy.
In this case, however, further extension of the state space did not
give any effect: the best policy of choosing search radius for each
bit string was almost the same as the optimal policy based on the
fitness. The positive side of this is that we can use the optimal policy
for S (LO,OM) , which is easy to compute, as a reference for testing
learning methods that look for an optimal policy in the much larger
state space S𝑥 .

We are convinced that examples like ours can be very useful in
the context of dynamic algorithm configuration [1], where they
can be exploited as benchmarks with known ground truth [2, 7].
In this spirit, we plan to investigate the impact of different state
space choices for other settings, in particular for other problems,
other algorithms, and other performance criteria. By replacing
actual algorithm runs by simulated ones, it is also possible to scale
the stochasticity of the reward that is assigned to a chosen action.
Such a treatment and gradual decrease of the randomness would
deliver relevant insights into the brittleness of dynamic algorithm
configuration approaches.
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