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Abstract

This report explores recent advances in the integration of submodular functions within
the framework of Distributionally Robust Optimization (DRO), a powerful approach for
decision-making under uncertainty. After reviewing the theoretical foundations of DRO
and submodularity, we focus on conditions under which their combination yields tractable
formulations. In particular, we examine how structural properties of submodular func-
tions—such as diminishing returns and analogies to convexity—can be leveraged to design
DRO models that are solvable in polynomial time, even in the presence of complex am-
biguity sets. The report summarizes key results from the literature and discusses their
implications in real-world scenarios such as sensor placement and influence maximization.
We conclude by outlining open questions and proposing new research directions that build
on the synergy between DRO and submodular optimization.
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Introduction

In the following report, we summarize the work done during a short internship conducted
remotely under the supervision of Prof. Angelos Georghiou and Prof. Rosario Paradiso.
The project consisted in a further study of recent results that exploit the properties of
submodular functions to derive tractable formulations for distributionally robust opti-
mization. In the end of this report, we suggest possible applications to sensor placement,
leaving the details for further research.

Motivations

Optimization under uncertainty seeks to model decision-making processes more realisti-
cally than deterministic formulations, which often overlook variability in real-world sys-
tems. This is particularly relevant in fields such as energy systems—where future demand
is uncertain—and logistics, where travel times and costs are often unpredictable. Two
classical approaches to handling such uncertainty are Stochastic Optimization (SO), which
minimizes the expected cost, and Robust Optimization (RO), which minimizes the worst-
case cost.

Distributionally Robust Optimization (DRO) is a more recent and promising frame-
work that lies between these two paradigms. Instead of relying on a single probability
distribution (as in SO) or the worst-case realization (as in RO), DRO models uncertainty
via an ambiguity set—a family of plausible probability distributions—and seeks to mini-
mize the worst-case expected cost across this set. This yields a more nuanced and balanced
approach, which is particularly appealing in situations where the true distribution is not
precisely known but can be estimated or bounded.

Despite its modeling power, DRO problems are generally hard to solve. Optimizing
over sets of distributions is computationally intractable in the general case, and tractabil-
ity can only be achieved under specific structural assumptions—such as particular choices
of ambiguity sets or objective functions.

One such structural property that has attracted increasing attention is submodularity.
A submodular function exhibits diminishing returns: the incremental benefit of adding
an element to a set decreases as the set grows. This property arises naturally in many
real-world settings, such as sensor placement—where adding a sensor yields less marginal
information if others are already placed—and cost-sharing scenarios. Moreover, submod-
ular functions share key similarities with convex functions in terms of tractability: for
instance, minimization of submodular functions over discrete domains can often be per-
formed efficiently.

This makes the intersection between DRO and submodularity a particularly promising
research direction. By combining the modeling robustness of DRO with the structural
properties of submodular functions, one can obtain tractable formulations of complex
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decision problems under uncertainty. Such formulations can better capture the nature
of real-world systems while remaining computationally feasible, offering both theoretical
insights and practical impact.

Contributions

This report investigates the conditions under which the submodularity of the objective
function yields tractable formulations of distributionally robust optimization (DRO) prob-
lems. The goal is to provide a systematic understanding of how structural assump-
tions—motivated by real-world applications—can be exploited to obtain efficient algo-
rithms for otherwise intractable problems. The wide range of problems covered in the
literature highlights the broad applicability and potential impact of this line of research.

Our contribution is twofold. First, we present a comprehensive and self-contained
review of recent theoretical results at the intersection of submodular optimization and
DRO. Each result is introduced in a general probabilistic-optimization framework and
then illustrated through its main applications. Second, we propose potential research
directions, including an original formulation for sensor placement under uncertainty, aimed
at integrating submodularity into robust decision-making models.

The structure of this report is as follows. Chapter 1 reviews the probabilistic and op-
timization background, including detailed definitions of DRO formulations and submod-
ularity. Chapter 2 presents the main tractability results from the literature, alongside
key applications. Chapter 3 explores new applications, with a focus on sensor placement.
Finally, Chapter 4 summarizes the findings and outlines possible directions for future
research.



Chapter 1

Background

1.1 Distributionally Robust Optimization

1.1.1 Formulation

The problems we studied are Distributionally Robust Optimization (DRO) problems.
These consist of a general class of optimization problems whose objective function includes
a stochastic term as a random variable ξ̃ whose distribution is unknown but considered
to be in an ambiguity set P . DRO aims to minimize with respect to a decision variable
x the expected objective for the worst-case distribution P ∈ P .

Formally, a DRO problem can be formulated as

inf
x∈X

sup
P∈P

EP[f(x, ξ̃)] (1.1)

where

• x is a decision vector in a set X ⊆ RN ;

• P is a probability measure from a set called ambiguity set P ;

• ξ̃ is a random vector distributed as P.

The problem consists in choosing x such that it minimizes the worst-case expectation
of a random cost function f , whose randomness is contained in the random vector ξ̃.

The generality of the DRO framework comes from the fact that the two main paradigms
for optimization under uncertainty, i.e. Stochastic Optimization (SO) and Robust Opti-
mization (RO), can be derived as DRO with special choice of ambiguity set P . In par-
ticular, if the ambiguity set consists only of one element P = {P} the problem simplifies
to

inf
x∈X

EP[f(x, ξ̃)] (1.2)

which corresponds to a stochastic optimization (SO) problem.
Another speical case for 1.1 occurs when P = P(Ξ), i.e. P is the set of the probability

measures P whose support is a closed bounded set Ξ. In this case we know that ξ̃ ∈ Ξ, so
the worst case correspond to the probability measure that gives all mass to the worst-case
realization in Ξ. The resulting problem is a robust optimization (RO) problem:

inf
x∈X

max
ξ∈Ξ

f(x, ξ) (1.3)

7



8 CHAPTER 1. BACKGROUND

1.1.2 Complexity Results

The previous formulation gives a general framework for many practical problems. We are
now interested in studying the computational complexity of the previous formulations.
To do so, we will use the following common notation for problem complexity:

• P: is the class of problems solvable in a polynomial time in the number of inputs;

• NP: is the class of problems for which a solution can be verified in polynomial time;

• #P: is the class of problems whose task is to count the number of solutions to a
problem which is NP ;

• #P− hard: is the class of problems at least as difficult as any other problem in
#P ;

• #P− complete: is the class of problems which are both in #P and #P − hard.

The aim of this report is to present situations in which the DRO problem is tractable,
i.e. solvable in polynomial time. We will present in the following section tractable formu-
lations in relation with the use of submodular functions.

Firstly, we present the main known results not connected with the use a submodular
or supermodular objective.

For the SO problem, it is solvable efficiently in the case of the following:

Proposition 1. If X is a polyhedral and P is discrete, 1.2 can be reformulated as a linear
program in size that grows linearly with the number of realization of ξ̃.

Proof. The SO problem can be rewritten in terms of realizations of the random vector ξ̃,
called scenario, as follows

inf
x∈X

∑
ξ scenario

f(x, ξ)P[ξ̃ = ξ]

where ξ are single realizations of ξ̃.

The most complex case is when all the components of ξ̃ are independent because it
leads to a number of scenario exponential in the dimension N . Therefore

Proposition 2. Computing the expected cost in 1.2 is #P-hard when the r.v. are mutu-
ally independent. Thus also the SO problem 1.2 is #P-hard when the r.v. are mutually
independent. This is true also if ξ̃ is continuous.

The result can be found in Hanasusanto et al. 2016.
The problem can also be approximated by a sample average:

inf
x∈X

∑
ξ sampled
scenario

f(x, ξ)P[ξ̃ = ξ]

Regarding the RO problem, a tractability case is expressed in the following:

Proposition 3. If X and Ξ are polyhedral, and f is affine in both x and ξ, the problem
1.3 is solvable using linear optimization.



1.1. DISTRIBUTIONALLY ROBUST OPTIMIZATION 9

Proof. Since we have an affine f , the problem is analogous to

inf
x∈X

max
ξ∈Ξ

at
k(x)ξ + bk(x) (1.4)

It can be rewritten in linear formulation, where the maxξ∈Ξ appears in the constraints.
This maximization problem in the constraints can be reformulated using duality and be
integrated as a constraint on each entry. For details, look at page 10 of Bertsimas et al.
2010.

The result is a linear program with a polynomial number of constraints and variables.

There exist also other tractability results for DRO problems with special ambiguity
sets. The first is the marginal distribution ambiguity set, defined as follows.

Definition 4. We call marginal distribution ambiguity set, the Frechét set P(P1, . . . ,PN)
of N marginal distributions P1, . . . ,PN , where (Pi) = Ξi.

Proposition 5. For marginal distribution ambiguity set, if X is a polyhedron, marginals
discrete, with finite support, f affine in both variables, then the DRO problem 1.1 is
solvable using a polynomial size linear program.

Proposition 6. For marginal distribution ambiguity set, if X is a polyhedron, marginals
continuous, f affine in both variables, then the DRO problem 1.1 is solvable using a convex
program.

Note that this ambiguity set contains the case of independent random variables which
in this case is not #P-hard, but polynomial.

Another tractable ambiguity set is the following.

Definition 7. We call moment ambiguity set, the set P of probabilities with EP[ξ̃] = µ
and EP[ξ̃ξ̃

t] = Q, with Q and µ fixed such as Q ⪰ µµt.

Proposition 8. For moment ambiguity set, if supp(P) = RN or is an ellipsoid, and f is
affine, the DRO problem 1.1 is solvable in polynomial time.

Proposition 9. For moment ambiguity set, if supp(P) is a polyhedron, the DRO problem
1.1 is NP-hard to solve.

Important ambiguity sets that we refer in the following sections are the statistical
distance based. We do not provide complexity results but we present the definitions.

Definition 10. A Φ-divergence between two probability measures P and Q defined over
Ω is

DΦ(P||Q) =

∫
Ω

Φ(
dP
dQ

(ω))dQ(ω) (1.5)

Two special cases are:

Definition 11. A Kullback-Leibler divergence between two probability measures P and
Q is

DKL(P||Q) =

∫
Ω

log(
dP
dQ

(ω))dP(ω) (1.6)
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Definition 12. A χ2 divergence between two probability measures P and Q is

Dχ2(P||Q) =
1

2

∫
Ω

(
dP
dQ

(ω)− 1)2dQ(ω) (1.7)

In general we can build

Definition 13. A Φ divergence uncertainty set around an empirical distribution P̂n is

Pρ,n := {P : Dχ2(P||P̂n) ≤
ρ

n
} (1.8)

where ∆n is the n-dim simplex.
If P̂n corresponds to an empirical sample Z1, . . . , Zn, the probabilities P ∈ Pρ,n corre-

spond to a vector p ∈ ∆n and thus we can equivalently define

Pρ,n := {p ∈ ∆n :
1

2
∥np− 1∥22} (1.9)

In section 2.4, we will use the following

Definition 14. A χ2 uncertainty set around an empirical distribution P̂n is

Pρ,n := {P : Dχ2(P||P̂n) ≤
ρ

n
} (1.10)

where ∆n is the n-dim simplex.
If P̂n corresponds to an empirical sample Z1, . . . , Zn, the probabilities P ∈ Pρ,n corre-

spond to a vector p ∈ ∆n and thus we can equivalently define

Pρ,n := {p ∈ ∆n :
1

2
∥np− 1∥22} (1.11)

Definition 15. The Wasserstein metric between two probability measures P1 and P2

defined over Ξ is

dW (P1,P2) := inf{
∫ 2

Ξ

∥ξ̃1 − ξ̃2∥P(ξ̃1, ξ̃2) : P ∈ P(P1,P2) Fréchet set} (1.12)

where ∥ · ∥ is an arbitrary norm on RN

We therefore define the ambiguity set

Definition 16. A Wasserstein ambiguity set around an empirical distribution P̂n is

Pρ,n := {P : dW (P, P̂n) ≤
ρ

n
} (1.13)

1.2 Submodularity

The main aim of this report is to present the existing tractability results for DRO problems
with submodular objective. Submodularity is a property of a function which combines
interesting practical insights with relevant optimization properties. We first give the
general definition and then discuss these characteristics.
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Definition 17. A function f :
∏

i=1,...,N Ξi −→ R is submodular if:

f(ξ) + f(χ) ≥ f(ξ ∧ χ) + f(ξ ∨ χ), ∀ξ,χ ∈
∏

i=1,...,N

Ξi (1.14)

The key idea of submodular functions is that of diminishing marginal returns, i.e.
combining values leads to lower benefits. In particular, taking the two extremes (min and
max) leads to a lower function value. With N = 2, we can give a geometric interpretation.
Let suppose Ξ = R2, or a rectangle in R2. With reference to figure 1.2 below, if f is
submodular, the sum of the values of the function on the top-left and bottom-right of a
rectangle is greater or equal than the sum of the bottom-left and top-right corner.

ξ1

ξ2

ξ ∧ χ ξ

χ ξ ∨ χ

We give this analogous definition of supermodular functions.

Definition 18. A function f is supermodular if −f is submodular. Equivalently,

f(ξ) + f(χ) ≤ f(ξ ∧ χ) + f(ξ ∨ χ), ∀ξ,χ ∈
∏

i=1,...,N

Ξi (1.15)

There exist some characterizations of submodularity function:

Proposition 19. If Ξ = {0, 1}N . Let S ⊆ {1, . . . , N} and ξi = 1i∈S. We define f(S) :=
f(ξ). f is submodular if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), ∀S, T ⊆ {1, . . . , N} (1.16)

Example 1. f(S) = |S|, with S = {1, 2}, T = {2, 3, 4}.

The key idea of diminishing returns is indeed that the marginal gain of adding an
element in a set reduces as the set grows larger. This is clear stating the following:

Proposition 20. The characterisation in 1.16 is equivalent to

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B), ∀A ⊂ B ⊆ {1, . . . , N}, i ∈ {1, . . . , N} \B
(1.17)
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Proof. Let us first see that 1.16 =⇒ 1.17.
We take S = A ∪ {i} and T = B

f(A ∪ {i}) + f(B) ≥ f(A ∪B ∪ {i}) + f((A ∪ {i}) ∩B)

= f(B ∪ {i}) + f(A)

Now let us suppose 1.17.
If S ⊆ T , it is obvious, since

f(S ∩ T ) + f(S ∪ T ) = f(S) + f(T )

So we can suppose that Xm := T \ S = {v1, . . . , vm}. Let us call Xi := {v1, . . . , vi}
and X0 = ∅. For hypothesis we have that

f((A ∩B) ∪Xi ∪ {vi+1})− f((A ∩B) ∪Xi) ≥ f(A ∪Xi ∪ {vi+1})− f(A ∪Xi)

We sum for i = 1, . . . , n− 1 and we obtain

f((A ∩B) ∪Xn)− f(A ∩B) ≥ f(A ∪Xn)− f(A)

which is, for definition of Xn

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

It is clear the interpretation of diminishing returns of 1.17.
We can give other characterisations of submodular functions:

Proposition 21. If Ξ = RN and f is differentiable, then f is submodular if

∂

∂ξi
f(ξ) ≥ ∂

∂χi

f(χ), ∀ξ ≤ χ,∀i ∈ {1, . . . , N} : ξi = χi (1.18)

In this case the interpretation is that, given the same value of f on a vector component,
the gains grow slower if the other components of the vector are bigger.

Similarly

Proposition 22. If Ξ = RN and f is twice differentiable, then f is submodular if

∂2

∂ξiξj
f(ξ) ≤ 0, ∀ξ ∈ RN , ∀i ̸= j (1.19)

The concept is similar: if we increase the cost on one component, the cost along cannot
increase faster. It is important to notice the difference with concavity given by the fact
that 1.19 needs to hold only for i ̸= j.

It is interesting to give some examples:

(i) f(ξ) = h(atξ), where a ≥ 0 and h : R −→ R is concave;

(ii) f(ξ) = max(ξ1, . . . , ξN);

(iii) f(ξ) = −
∏

i=1,...,N ξi, where ξ ≥ 0;
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(iv) f(ξ) = atξ.

(v) univariate functions and separable functions.

The example (i) is of a concave function and the submodularity follows from it.
The example (ii) is of a convex function.
The example (iii) is a function neither convex or concave;
The example (iv) is of a function both convex and concave.
Submodular functions have various properties. First of all,

Proposition 23. Let f1, . . . , fn be submodular functions and a1, . . . , an ≥ 0, then
∑n

i=1 aifi
is submodular, but fi ∧ fj with i ̸= j is not necessarily submodular.

Definition 24. We call decomposable submodular functions the submodular function
derived as sum of submodular functions.

However, the key property of submodular functions which make them particularly
interesting in the context of optimization is that they well-behave with respect to mini-
mization. In particular, we can say that submodular functions on discrete domains behave
similar to convex functions in continuous domains in terms of minimization.

This idea is given by the following theorem

Theorem 25. If f is a submodular function with polynomial evaluation oracle, and Ξi

are discrete and finite, the problem

inf
ξ∈

∏
i=1,...,N Ξi

f(ξ) (1.20)

is solvable in time polynomial in N , maxi=1,...,N |Ξi| and in the evaluation time of the
oracle.

Note that this works only for minimization; maximization of submodular functions is,
instead, in general NP-hard.

To understand the link between submodular and convex optimization we need to
introduce the concept of comonotonic random vector.

Definition 26. Given a Fréchet set P(P1, . . . ,PN) with ξ̃i ∼ Pi with supp(Pi) ⊆ Ξi. Let
Fi bet the cumulative distribution function of ξ̃i, then the comonotonic random vector is
the vector ξ̃c with maximal positive dependence in the Fréchet set and is given by:

ξ̃c := (F−1
1 (U), . . . , F−1

N (U)) (1.21)

where U is a uniform r.v. in [0, 1] and F−1
i the generalized inverse cdf.

We denote with Pc the distribution of ξ̃c.

The comonotonic r.v. has important properties:

Proposition 27. The following properties hold:

(i) ξ̃c lies in a completely ordered subset of RN , i.e. if ξ1 and ξ2 are two realizations of
ξ̃c, then ξ1 ≤ ξ2 or ξ1 ≥ ξ2;

(ii) Pc(ξ̃c > t) = mini∈{1,...,N} Pi(ξ̃i > ti) and Pc(ξ̃c ≤ t) = mini∈{1,...,N} Pi(ξ̃i ≤ ti),
∀t ∈ RN;
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(iii) EPc [f(ξ̃c)] =
∫ 1

0
f(F−1

1 (t), . . . , F−1
N (t))dt.

For (iii), we notice that if Ξi is discrete and finite the cardinality of the support of ξ̃c

is at most
∑N

i=1 |Ξi| and thus the expectation is computable using a polynomial number
of calls to the evaluations oracle.

Another important characterization of the comonotonic r.v. exists:

Proposition 28. ξ̃ is the comonotonic vector of P(P1, . . . ,PN) if and only if:

(a) infP∈P(P1,...,PN ) EP[f(ξ̃)] = EPc [f(ξ̃c)], ∀f submodular;

(b) supP∈P(P1,...,PN ) EP[f(ξ̃)] = EPc [f(ξ̃c)], ∀f supermodular;

The connection with optimization of submodular functions is made through this result:

Proposition 29. f :
∏

i=1,...,N Ξi −→ R is submodular if and only if the functional

infP∈P(P1,...,PN ) EP[f(ξ̃)] is convex.

The functional value is called Choquet integral or Lovàsz extension.

Theorem 30. Therefore we can reformulate a minimization problem of submodular func-
tion as a convex optimization problem:

inf
ξ∈

∏
i=1,...,N Ξi

f(ξ) = inf
supp(Pi)⊆Ξi,∀i∈[N ]

inf
P∈P(P1,...,PN )

EP[f(ξ̃)] = inf
supp(Pi)⊆Ξi,∀i∈[N ]

EPc [f(ξ̃c)]

(1.22)

Proof. The second equality follows the characterization of the comonotonic vector. The
first equality follows the fact that the optimal solution on the right-hand side is a Dirac
measure and, thus, calculating the expectation is the same as calculate the value of the
function.



Chapter 2

Tractability of DRO Problems with
Submodularity

In this Chapter, we present the main results from literature about tractable formulations
of DRO problems which exploit in their formulation (in the objective or in the definition
of the ambiguity sets) submodularity (or supermodularity). We will present four different
approaches, followed by the discussions of some applications.

2.1 Polynomial Time Sharp Bound

In this section, we summarize the main results from Natarajan et al. 2023. In the paper a
general ambiguity set is defined and a polynomial tractability of DRO affine bound for that
ambiguity set is presented. Submodularity is exploited in the definition of the ambiguity
set. The objective function is an affine function, therefore we consider a problem of the
form

inf
x∈X

sup
P∈P

EP[f(x, ξ̃) := max
k∈{1,...,K}

(at
k(x)ξ̃ + bk(x))] (2.1)

In particular, we consider the bound:

f ∗ = sup
P∈P

EP[f(ξ̃) := max
k∈{1,...,K}

(at
kξ̃ + bk))] (2.2)

In the bound 2.2, we fix x and calculate the corresponding cost. Calculating f ∗

therefore means providing a bound on the optimal value of the DRO affine problem 3.3.
In the paper from Natarajan et al. 2023 it is studied f ∗ for the following ambiguity

set:

P = {P = P(Ξ)|EP[fj(ξ̃)] ≤ γj, ∀j ∈ {1, . . . , J}] (2.3)

where γj are scalars and fj : Ξ −→ R are functions.

Remark 31. The following assumptions are made for the ambiguity set:

(i) Ξ =
∏N

i=1 Ξi, with Ξ : i ⊂ R is discrete and finite;

(ii) fj are submodular functions with polynomial time evaluation oracle.

Proposition 32. Testing whether P with the assumptions from remark 31 is not empty
is possible in polynomial time.

15
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The main result of the paper is

Theorem 33. If the ambiguity set 2.3 follows the assumptions in remark 31. Then the
bound f ∗ in 2.2 is computable in polynomial time.

Proof. Since Ξ is discrete and finite, choosing a probability measure P in P corresponds in
assigning a value to p(ξ) := P(ξ̃ = ξ) for every ξ ∈ Ξ, with p(ξ) ≥ 0 and

∑
ξ∈Ξ p(ξ) = 1.

We can therefore reformulate 2.2 as a linear program with p(ξ) as decision variables:

f ∗ = maximize
∑
ξ∈Ξ

max
k∈{1,...,K}

(at
kξ̃ + bk)p(ξ) (2.4)

subject to
∑
ξ∈Ξ

fj(ξ)p(ξ) ≤ γj, ∀j ∈ {1, . . . , J}, (2.5)∑
ξ∈Ξ

p(ξ) = 1, (2.6)

p(ξ) ≥ 0, ∀ξ ∈ Ξ, (2.7)

We note that the number of constraints, excluding the nonegativity, is polynomial.
The number of variables however is exponential, because if ξ̃ have independent marginal,
the number of variables, i.e. the number of possible realizations of the r.v., is exponential
in N .

Therefore we build the dual problem:

f ∗
d = minimize y0 +

J∑
j=1

yjγj (2.8)

subject to y0 +
J∑

j=1

yjfj(ξ) ≥ max
k∈{1,...,K}

(at
kξ + bk), ∀ξ ∈ Ξ (2.9)

yj ≥ 0, ∀j ∈ {1, . . . , J} (2.10)

(2.11)

In the dual problem obviously the number of variables is polynomial and the number
of constraints is exponential.

We have feasibility of the dual problem, since a solution is yj = 0 ∀j ∈ {1, . . . , J} and
y0 = maxk∈{1,...,K}(a

t
kξ + bk).

Since it is linear, we can apply strong duality, which says that f ∗ = f ∗
d . Therefore we

look for f ∗
d :

For the separation and optimization equivalence, optimizing the dual is equivalent to
solving the following separation problem:

Given y0 and yj ≥ 0 decide whether

y0 +
J∑

j=1

yjfj(ξ) ≥ max
k∈{1,...,K}

(at
kξ + bk), ∀ξ ∈ Ξ (2.12)

This is equivalent to check if



2.1. POLYNOMIAL TIME SHARP BOUND 17

y0 +
J∑

j=1

yjfj(ξ) ≥ at
kξ + bk, ξ ∈ Ξ,∀k ∈ {1, . . . ,K} (2.13)

And equivalently

y0 − bk + min
ξ∈Xi

(
J∑

j=1

yjfj(ξ)− bfatkξ) ≥ 0, ∀k ∈ {1, . . . , K} (2.14)

Submodularity of fj implies submodularity of (
∑J

j=1 yjfj(ξ)−bfatkξ). Thus it consists
in solving K submodularity minimization problems, which require polynomial time as
theorem 25 states.

We have an important corollary on the solvability of the DRO problem:

Theorem 34. If X is a compact convex set with an efficient separarion oracle and the
ambiguity set P satisfies the assumptions in remark 31, then the DRO affine problem 2.2
is solvable in polynomial time.

Proof. We reformulate the dual problem with its dual as in proof of theorem 33:

minimize y0 +
J∑

j=1

yjγj (2.15)

subject to y0 +
J∑

j=1

yjfj(ξ) ≥ max
k∈{1,...,K}

(at
kξ + bk), ∀ξ ∈ Ξ (2.16)

yj ≥ 0, ∀j ∈ {1, . . . , J} (2.17)

(2.18)

As before we reformulate in term of separation problem: given yj ≥ 0, y0 and x ∈ X ,
we have to determine whether

y0 − bk(x) + min
ξ∈Xi

(
J∑

j=1

yjfj(ξ)− bfatk(x)ξ) ≥ 0, ∀k ∈ {1, . . . , K} (2.19)

which can be done in polynomial time.

A generalization of the computable bound is stated in the following

Theorem 35. Consider the bound supP∈P EP[maxk∈{1,...,K} gk(ξ̃)] where the ambiguity set
P follows the assumptions in remark 31. If gk is a supermodular function for each k with
polynomial time evaluation oracle, then the bound is efficiently computable.

Proof. The proof is analogous to the previous ones.

Remark 36. There exists an efficient specialized algorithm to solve the decomposable
submodular function minimization problem we have in the proof of theorem 33.
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2.2 Applications of Polynomial Time Sharp Bound

2.2.1 Multimarginal Optimal Transport

Definition 37. Given N marginals P1, . . . ,PN , and a cost function c(ξ1, . . . , ξN), where
ξi ∼ µi. The multimarginal optimal transport (MMOT) problem consists in finding a mea-
sure π ∈ P(P1, . . . ,PN), Fréchet set of P1, . . . ,PN , which solves the following minimization
problem:

minimize

∫
c(ξ1, . . . , ξN)dπ(ξ1, . . . , ξN) (2.20)

In case that Pi are defined over Ξi finite and discrete, we can define the Fréchet class
as an ambiguity set which satisfies the assumptions of remark 31.

Definition 38. Given a N -dimensional random vector ξ̃ ∼ P and a N -dimensional ran-
dom vector χ̃ ∼ Q, we say that ξ̃ is larger than χ̃ in the:

• upper orthant (UO) order if:

P(ξ̃ > t) ≥ Q(χ̃ > t), ∀t ∈ RN (2.21)

• lower orthant (LO) order if:

P(ξ̃ ≤ t) ≥ Q(χ̃ ≤ t), ∀t ∈ RN (2.22)

• concordance (or orthant) order if it is larger in both UO and LO orders

• supermodular (SM) order if:

EP[f(ξ̃)] ≥ EQ[f(χ̃)], ∀ supermodular f (2.23)

Proposition 39. (i) For N = 2, UO ⇐⇒ LO ⇐⇒ SM ⇐⇒ concordance

(ii) For N ≥ 3, SM =⇒ UO and SM =⇒ LO.

Remark 40. It is often chosen χ̃ ∼ P and χ̃ = ξ̃⊥, the random vector in the Fréchet set
P(ξ̃1, . . . , ξ̃N) with independent components. In this case we use the terms positive upper
[lower] orthant dependence (POUD [POLD]) and therefore positive orthant dependence
(POD).

We now consider the two assumptions on the random variables we are considering:

(i) ξ̃i are discrete with probabilities given by pi(ξi) = P(ξ̃ = ξi), for ξi ∈ Ξi finite set;

(ii) The bivariate distribution of (ξ̃i, ξ̃j) is POD for i ̸= j.

Under these assumptions we define the ambiguity set:

P := {P ∈ P(
N∏
i=1

Ξi)|P(ξ̃i = ξi) = pi(ξi),∀ξi ∈ Ξi,∀i ∈ {1, . . . , N}, (2.24)

P(ξ̃i ≥ ξi, ξ̃j ≥ ξj) ≥
∑
ξ≥ξi

pi(ξ)
∑
ξ≥ξj

pj(ξ),∀ξi ∈ Ξi,∀ξj ∈ Ξj, ∀i < j ∈ {1, . . . , N}}.

(2.25)

which corresponds to the ambiguity set of an instance of MMOT with upper depen-
dence.
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Remark 41. ξ̃c and ξ̃⊥ both are included in P , so there is no assumption on the dependence
of 3 or more variables (on 2 it is assumed POD).

Remark 42. Since 1ξi>ti,ξj>tj(ξi, ξj) are supermodular, thus P satisfies the assumption of
remark 31.

Proposition 43. Taking as ambiguity set the P defined in 2.24 we have that the upper
bound f ∗ in 2.2 is equivalent to a polynomial sized linear program.

2.2.2 Moment Problem

As with moment problem we refer to problems where we define ambiguity sets fixing some
of the moments of the probability measures.

Remark 44. We will make the following assumptions:

(i) Each random variable ξ̃i is discrete with support contained in a finite set Ξi. For

each r.v., the first L moments are specified as mi,l = E[ξ̃li] for l ∈ {1, . . . , L};

(ii) Each pair of r.v. has a lower bound on the cross moment, i.e. E[ξ̃iξ̃j] ≥ Qi,j for
i ̸= j.

Proposition 45. Under the assumptions of remark 44 compute the DRO affine bound in
2.2 f ∗ is equivalent to a polynomial sized linear program.

2.3 Price of Correlation

2.3.1 POC Framework

Another study of the relationship between submodularity and DRO is made in the paper
Agrawal et al. 2012.

Remark 46. In the paper it is considered a DRO problem with a marginal ambiguity set
and discrete distribution, i.e. a DRO in the form

g(x) := maximize ED[f(x, S)]

subject to
∑
S:i∈S

PD(S) = pi ∀i ∈ V (2.26)

The paper introduces the concept:

Definition 47. For a certain DRO instance defined by (f, V, {pi}). We call xI the optimal
decision assuming independent marginals and xR the optimal DRO decision. We define
as price of correlations (POC) the ratio

POC =
g(xI)

g(xR)
(2.27)

The POC is a measure of the cost of solving the stochastic optimization problem
for independent marginals instead of the DRO problem. In the paper there are shown
some results for submodular and supermodular functions, but before we give the following
definitions to introduce a cost-sharing scheme:
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Definition 48. Given a set function f(S), a cost-sharing scheme is a function χ(i, S),
with i ∈ S, which specifies the share of i in S, i.e. how much the element i contributes to
the total cost of f(S).

Definition 49. A scheme χ is β-budget balance if, ∀S,

f(S) ≥
∑
i∈S

χ(i, S) ≥ f(S)

β
(2.28)

Which means that the sum of the cost share in S is lower than the total cost, but
higher than 1/β of the cost.

Definition 50. A scheme χ is cross-monotonic if, ∀i ∈ S, S ⊆ T ,

χ(i, S) ≥ χ(i, T ) (2.29)

which it means that if we add elements in the cost sharing scheme, the cost share of i
does not increase.

Definition 51. A scheme χ is weak η-summable if ∀S and ∀σS permutation of |S| ele-
ments,

|S|∑
l=1

χ(il, Sl) ≤ ηf(S) (2.30)

where il is the l
th element and Sl is the set of the first l elements according to the ordering

in σS.

Which it means that no matter how we order the elements, the sum of shared cost
will not exceed ηf(S).

Theorem 52. For any DRO instance {f, V, {pi}} with marginal ambiguity set, such that
for all x, f(x, S) is non decreasing in S and has a cost-sharing scheme which is β-budget
balance, η-weak-summable and cross-monotonic, then

POC ≤ min{2β, ηβ( e

e− 1
)} (2.31)

2.3.2 Submodularity POC

Considering a submodular set function h, we define the incremental cost-sharing scheme:

χ(i, S) = h(Si)− h(Si−1) (2.32)

where Si is the set of the first i elements of S. The cost scheme defined simply takes
the increase in the value of h by adding the element i as shared cost of i.

Proposition 53. The cost-sharing scheme defined in 2.32 is 1-budget balance, cross-
monotonic and 1-weak-summable.

The proof is quite immediate from the definition.
From theorem 52, it follows
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Corollary 54. For any DRO instance {f, V, {pi}} with marginal ambiguity set and f(x, S)
non-decreasing and submodular in S for all feasible x,

POC ≤ e

e− 1
(2.33)

Moreover,

Proposition 55. For any DRO instance {f, V, {pi}} with marginal ambiguity set and
f(x, S) non-decreasing and submodular in S for all feasible x,

POC =
e

e− 1
(2.34)

The result is particularly relevant because it says that we can approximate quite well
the DRO problem for submodular functions and marginal discrete ambiguity set with the
stochastic problem that assumes that all marginals are independent.

2.3.3 Supermodularity POC

When the cost function f(x, S) is supermodular in S, we have that the POC can be even
exponential.

Example 2. We consider a two-stage minimum cost flow problem with a single source s
and n sinks t1, . . . , tn. We assume that each sink as a probability pi = 1/2 to request a
demand, and then an unit flow has to be sent from s to ti. There are edges from u to ti
for every i with fixed capacity 1, and an edge from s to u, whose capacity needs to be
purchased.

The cost of capacity x on the edge (s, u) is in the first stage

cI(x) =

{
x, x ≤ n− 1

n+ 1, x = n
(2.35)

and in the second stage it is
cII(x) = 2nx (2.36)

Given x as the decision of the first stage, the cost of edges in the second stage to serve
a set S of requests is

f(x, S) = cI(x) + 2n(|S| − x)+ (2.37)

which is supermodular.
The expected cost with independent demands is n, while the worst case distribution

is the one with P(V ) = P(∅) = 1/2 and probability 0 to all other scenarios, which leads
to a cost of 2n−1 + n− 1.

It follows that POC = Ω(2n).

In general it holds that

Proposition 56. The worst-case distribution over S for a supermodular function f with
marginals p1 ≥ p2 ≥ · · · ≥ pn is

P(S) =


pn, ifS = Sn

pi − pi+1, ifS = Si, 1 ≤ i ≤ n− 1

1− p1, ifS = ∅
0, otherwise

(2.38)
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A consequence is

Corollary 57. The DRO problem with supermodular objective and marginals p1, . . . , pn
can be formulated as

min
x∈X

pnf(x, Sn) +
n−1∑
i=1

(pi − pi+1)f(x, S
i) + (1− pi)f(x,∅) (2.39)

which becomes tractable with convex optimization techniques if f(x, S) is convex in
x and X is convex.

2.3.4 Applications

An applications of the results above is stated in the paper Chen et al. 2020, where it is
studied a distributionally robust model for influence maximization.

2.4 Distributionally Submodular Maximization

2.4.1 Formulation

In Staib et al. 2018, a different approach is adopted to address a different class of sub-
modular distributionally robust optimization problems.

The DRO problem addressed is

maxSminP∈Pρ,nEf∼P[f(S)] = maxSminp∈Pρ,n

n∑
i=1

pifi(S) (2.40)

Where

• f : 2V −→ R is a submodular set function, with f is distributed as P

• fi are i.i.d. samples from P and pi corresponds which define the discrete empirical
distribution P̂n(f = fi);

• Pρ,n is a χ2 uncertainty set of radius ρ and centered in P̂n.

Remark 58. We note some important differences with the problem of section 2.1:

• we aim to solve a maximization DR problem;

• f is intended only as set function;

• f is not necessarily affine;

• the ambiguity set is a χ2 uncertainty set.

The paper firstly reformulates the problem as the relaxation:

max
D

min
i∈{1,...,n}

ES∼D[fi(S)] (2.41)

so we take an optimal distribution D over the sets S and look only at the worst-case
sample fi.

The paper then extends f with submodularity to obtain a function defined in a subset
of RN rather than a set function. In this way we also obtain a formulation more similar
to the one in section 2.1:
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Definition 59. A multilinear extension of f is a function F : X ⊆ [0, 1]N −→ R defined
as

F (x) :=
∑
S⊆V

f(S)
∏
i∈S

xi

∏
xj /∈S

(1− xj) (2.42)

As we see the extension F is the expected value of f(S), given that each element of
index i could belong to S independently with probability xi.

Remark 60. F is defined over the convex hull X of indicator vector of feasible sets.

Proposition 61. F is still submodular, in particular the following property of concavity
along increasing directions holds:

F (x+ γei)− F (x) ≥ F (y + γei)− F (y), ∀x ≤ y, γ > 0 ∈ X , i ∈ {1, . . . , n} (2.43)

The paper therefore redefines the problem 2.40 as

max
x∈X

min
p∈Pρ,n

n∑
i=1

piFi(x) (2.44)

Remark 62. In this problem:

• X is convex;

• Fi are submodular but not necessarily affine;

• Pρ,n is a ξ2 ambiguity set of discrete probability distributions over continuous sets,
represented as vectors over ∆n.

Remark 63. The problems are two:

(i) How to solve efficiently 2.40 from 2.44;

(ii) How to efficiently solve 2.44.

For (i), the paper states the following

Proposition 64. If x is an α-optimal solution to 2.44, then x induces a distribution D
over subsets so that D is (1− 1/e)α-optimal for 2.40.

This result is application of the price of correlation described in section 2.3. The idea is
that, with the definition of F we are taking the set distribution D over the subsets S with
independent marginals pi of the single elements. The approximation with independent
marginals for submodular functions has a POC of e/(e− 1), as shown in proposition 55.

Definition 65. We say that f̃ is an α-optimal solution for an optimization problem whose
solution is f ∗ if it holds that

f̃ ≥ 1

α
f ∗ (2.45)

Remark 66. x induces a distribution in the sense that it gives the probability of each
element to be in a set S, i.e. it induces the distribution

P(S) =
∏
i∈S

xi

∏
j /∈S

(1− xj) (2.46)

We note that this distribution assumes marginals independent, i.e. that {xi ∈ S} and
{xj ∈ S} are independent if i ̸= j.
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2.4.2 Algorithmic Solution

The problem (ii) from remark 63 is solved in the paper by presenting an algorithm.
The paper proposes a Momentum Franck-Wolfe (MFW) algorithm to solve the prob-

lem:

Remark 67. The Frank-Wolfe algorithm solves convex problems of the form

minimize f(x) (2.47)

subject to x ∈ D (2.48)

with f and D convex.
The FW algorithm finds first the direction s(t) that minimizes the gradient with ref-

erence to the current point x(t) solving

minimize st∇f(x(t)) (2.49)

subject to s ∈ D (2.50)

The solution s(t) is then used to determine the next value of x:

x(t+1) ←− x(t) + α(sk − xk) (2.51)

The algorithm proposed introduces a momentum in the Franck-Wolfe iteration Heuris-
tically, the algorithm proposed, works as follow:

1. Based on the value of the latest solution x(t−1), it computes p(t) := argminp∈Pρ,n

∑n
i=1 piFi(x

(t−1));
remember we want to find x that then maximizes this quantity;

2. it calculates an approximation of the gradient of the objective selecting c ≤ n, i.e.
∇̃(t) := 1

c

∑c
l=1 p

(t)
il
∇Fil(x

(t−1));

3. it moves the momentum towards ∇̃(t), based on a step parameter ρt, i.e. d(t) :=
d(t−1) + ρt(∇̃(t) − d(t−1));

4. it finds the best search direction in X , with momentum d(t), i.e. v(t) := argmaxv∈X ⟨d(t), v⟩;

5. it moves the solution of v(t), i.e. x(t) := x(t−1) + v(t)/T , where T is the time.

The main differences with a standard Frank-Wolfe is the use of a momentum d(t) which
replaces the simple use of gradient. The momentum conserves part of the information
from previous iterations in determining the best search direction.

Remark 68. The difference of FW and MFW with respect to gradient descent is that it
solves an optimization problem instead of a simple projection. In our setting this problem
is cheap to solve.

2.5 Applications of Submodular Maximization

2.5.1 Variance-regularization

The application presented in Staib et al. 2018 is variance regularization.
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Definition 69. Let f be a stochastic set function and suppose we have the optimization
problem:

optimize fP(S) := Ef∼P[f(S)] (2.52)

Let f1, . . . , fn samples of f ∼ P that form an empirical distribution P̂n. We call variance-
regularized problem of 2.52, the following optimization problem:

optimize fP̂n
(S)− C1

√
varP̂n

(f(S))

n
(2.53)

This problem arises when we have a limited number n of samples: in this case it is
better to optimize directly the bias-variance trade-off instead of fP̂n

.
It is shown that the variance-regularized problem is equivalent to a DRO problem

in the form as the one addressed in section 2.4, in particular three results state the
equivalence of the variance reduction and a DRO problem:

Proposition 70 (Theorem 2.1 from Staib et al. 2018). Fix ρ ≥ 0, and let Z ∈ [0, B] be a
random variable (i.e., Z = f(S)). Write s2n = VarP̂n

(Z) and let OPT = inf P̃∈Pρ,n
EP̃ [Z].

Then (√
2ρ

n
s2n −

2Bρ

n

)
+

≤ EP̂n
[Z]−OPT ≤

√
2ρ

n
s2n. (2.54)

Moreover, if s2n ≥
2ρ(maxi zi−zn)2

n
, then

OPT = EP̂n
[Z]−

√
2ρ

n
s2n, (2.55)

i.e., DRO is exactly equivalent to variance regularization.

Proposition 71 (Lemma 2.1 from Staib et al. 2018). Fix δ, and let S be a subset chosen

to maximize fP̂n
(S) − C1

√
VarP̂n

(f(S))/n. With probability at least 1 − δ, the subset S

satisfies

fP (S) ≥ fP̂n
(S)− C1

√
VarP (f(S))/n− C2/n, (2.56)

where C1 ≤
√
2 log(1/δ) and C2 ≤ 2B log(1/δ).

Proposition 72 (Lemma 2.2 from Staib et al. 2018). Let Pρ,n be the χ2 uncertainty set

around the empirical distribution P̂n. If S is a solution to the problem maxS minP̃∈Pρ,n
EP̃ [f(S)],

then with high probability, it holds that

fP (S) ≥ min
P̃∈Pρ,n

EP̃ [f(S)]−
2Bρ

n
. (2.57)

2.5.2 Influence Maximization

Definition 73. Given a graph G = (V,E), on which influence propagates. Edges can
be active or inactive, i.e. edges which can or cannot spread the influence. The influence
maximization problem consists in finding an initial seed set S ⊆ V of influenced nodes to
maximize the number of nodes subsequently influenced. A node is influenced if connected
to an influenced node via an active edge.
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The different diffusion model distinguish how an edge could be activated. In the most
common ones the fact of an edge being active is stochastic, i.e. it induces a distribution
on f(S), the function which indicates the number of influenced nodes given the set seed
S.

Trying to maximize the expectation of f(S), the problem can be written as a sub-
modular distributionally robust maximization problem. The only thing to observe is the
fact that f is submodular, but that is quite natural thinking of the submodularity as the
property of diminishing returns.

2.5.3 Facility Location

Definition 74. Given a set V of possible facility locations j and a number of demand
points i, drawn from a distribution D. The facility location problem consists in choosing
a subset S ⊆ V that covers the demand points as well as possible, i.e. maximizing a
measure rij, which expresses how well a point i is covered by the facility j.

The problem aims to solve the following optimization problem:

maximize Ei∼D[max
j∈S

rij] (2.58)

The function f(S) = maxj∈S r
i
j is submodular and the distribution D over i induces a

distribution P over f(S).

2.6 Supermodularity in Two-stage DRO

Another recent result in the topic comes from Long et al. 2023, which studies a tractable
formulation of a two-stage distributionally robust optimization model, with a supermod-
ular function representing the second stage cost.

Definition 75. The two-stage DRO problem is defined as follows:

minx∈X (a
tx+ sup

P∈D
EP[g(x, z̃)]) (2.59)

where z̃ is a random variable and g is defined as

g(x, z) = min bty

s.t. Wx+ Uy ≥ V z + v0
(2.60)

x represents the first stage decision, y the second stage.

The ambiguity set used in the paper is a scenario-wise ambiguity set, defined as

Definition 76. We defined the scenario-wise ambiguity set as

D =


P

∣∣∣∣∣∣∣∣∣∣∣

EP[z̃ | k̃ = k] = µk, ∀k ∈ [K]

EP[|z̃i − µk
i | | k̃ = k] ≤ δki , ∀k ∈ [K]

P(z̃k ≤ z̃ ≤ z̃
k | k̃ = k) = 1, ∀k ∈ [K]

P(k̃ = k) = qk, q ∈ Q,∀k ∈ [K]


. (2.61)

where k̃ is a random variable which can assume value in [K] and represents a scenario
which affects the distribution of z̃.
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Remark 77. Some assumptions on D are made in the paper to avoid trivial cases.

Remark 78. If we fix a scenario k̃ = k, we have an ambiguity set for z̃ defined by its mean,
its mean absolute deviation and its support.

In the fixed scenario case we can state the worst-case marginal distribution distribution
P∗
k ∈ arg supPk∈Dk EPk [g(x, z̃)] for each z̃i.

Proposition 79.

P ∗
k (zi = w) =


δk,i

2(µk,i−zk,i)
if w = zk,i,

1− δk,i(zk,i−z̄k,i)

2(z̄k,i−µk,i)(µk,i−zk,i)
if w = µk,i,

δk,i
2(z̄k,i−µk,i)

if w = z̄k,i.

(2.62)

where δ̂k,i is defined as:

δ̂k,i = min

{
δk,i,

2(z̄k,i − µk,i)(µk,i − zk,i)

z̄k,i − zk,i

}
. (2.63)

This distribution satisfies the mean and MAD constraints for each zi under scenario
k, providing the worst-case expected cost for each marginal component individually.

The exact joint distribution, however, remains unknown.

Proposition 80. Given f : Rn −→ R, it is equivalent to say that

(1) f is supermodular

(2) Given a certain random vector w̃ and defined a set of probability measures P =
{P|P(w̃i = xij) = pij, j ∈ [mi], i ∈ [n])} for fixed xij, pij,mi. Then there exist a
worst-case distribution P∗ ∈ arg supP∈P EP[f(w̃)], such that the support of w̃, WP∗ =
{w ∈ Rn|P∗(w̃ = w) > 0}, forms a chain of at most (

∑
i∈[n](mi − 1) + 1) points.

Definition 81. A chain is a totally ordered subset of a partially ordered set.

The idea connected to supermodularity is that to obtain the worst case distribution we
move mass from two point w′, w′′ to w′∧w′′, w′∨w′′, which guarantees a higher expectation
due to supermodularity, does not change the marginal distributions and introduces an
ordering (w′ ∧ w′′ ≤ w′ ∨ w′′). The idea to obtain the worst case distribution is to move
all the mass in this way.

An algorithm is provided to find this worst case distribution w̃ = z̃ in Dk by build-
ing this chained support, in particular if g(x, z) is supermodular in z, we have that
supPk∈Dk E[g(x, z)] =

∑
i∈[2n+1] pig(x, z

i). The algorithm provided outputs p and zi in

O(n) time.

The idea of the algorithm is to move from z̃k to z̃
k
looking for a feasible chain subject

to the marginal distribution from proposition 79. This also constitutes the support for
the worst-case distribution.

The worst-case distribution so-defined is independent from the first stage decision x,
but the result can be generalized reintroducing the scenarios k. In this case the problem
becomes:

sup
P∈D

EP[g(x, z̃)] = max
q∈Q

sup
Pk∈Dk,k∈[K]

∑
k∈[K]

qkEPk
[g(x, z̃)] = max

q∈Q

∑
k∈[K]

qk sup
Pk∈Dk

EPk
[g(x, z̃)].

(2.64)
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by simply taking the expectation of a discrete and finite quantity of scenarios [K].
We can reformulate EPk

[g(x, z̃)] as before and then exploit the fact that Q is polyhe-
dron by definition, to write the following

Theorem 82. If g(x, z) is supermodular in z the two-stage stochastic DRO problem is
equivalent to the linear program

min atx+ νtl

s.t. Rt
kl ≥

∑
i∈[2n+1]

pki b
tyk,i, k ∈ [K],

Wx+ Uyk,i ≥ V zk,i + v0, k ∈ [K], i ∈ [2n+ 1],

l ≥ 0, x ∈ X.

(2.65)



Chapter 3

Applications to Sensor Placement

In this chapter, we present the sensor placement problem and give some hints on how
exploiting submodularity could help solving this problem.

3.1 Sensor placement orienteering problem

We consider the sensor placement orienteering problem as in Paradiso et al. 2022 of the
form

max
w∈W

min
ξ̄∈Ξ

max
y∈Y

min
ξ∈Ξ(w,ξ̄)

ξty (3.1)

The decision process looks like this:

1. We first choose w ∈ W as the nodes in which to place a sensor, with wi = 1 if we
place a sensor in i.

This decision is based on the worst-case scenario of a random variable ξ̄, which
satisfies some constraints Aξ̄ ≤ b;

2. We then observe the variables elements ξ̄i for which wi = 1 and consider a new
random variable ξ with the elements ξi fixed = ξ̄ observed;

3. We choose y ∈ Y to minimize ξty with respect to the worst-case realization of ξ.

We would like to integrate submodularity in the problem to solve the distributionally
robust problem efficiently through the techniques of the previous sections.

3.1.1 Existing Literature

We rapidly present two works which already exploit submodularity in problem of sensor
placement.

Golovin and Krause 2011

In the literature, the connection between sensor placement and submodularity is often
outlined. Often, such as in Golovin and Krause 2011 and in Krause and Guestrin 2007,
it is connected to the fact that sensors cover a certain area and, since the areas covered
by different sensors can overlap, the function which models the information gained by the
sensors exhibits the property of diminishing returns. However, this seems not to be the
case of our problem.
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Li and Mehr 2023

In the work Li and Mehr 2023, the problem stated is similar to ours, namely (Equation
(9) of the paper).

max
Lm⊆L

u(Lm)

s.t. |Lm| ≤ k
(3.2)

where Lm is a possible sensor placement among the possible configurations L, and u
a function which expresses the sensing performance of a configuration. The constraint is
on the number of sensors.

However, u and the submodularity structure follows the specific definition of the net-
work flow problem. Three different possible models are presented:

1. In the scenario where routing information is not available (section 5.1), the problem
becomes a linear system Af = b with the flows f we would like to know as unknown.
The quantity that models the information is the rank(A).

2. With information on the network structure (section 5.2), maximize the information
is intended as minimize the sum of variances of the estimation errors made by the
sensors.

3. Lastly (section 5.3), the information is modeled as the number of origin-destination
paths with a sensor on.

3.1.2 First approach

First approach to submodularity is to reformulate the problem 3.1 as in Natarajan et al.
2023.

In particular we would like a problem of the form

inf
y∈Y

sup
P∈P

Eξ∼P[ max
k∈{1,...,K}

(atk(y)ξ + bk(y))] (3.3)

where ak and bk are affine in y and P is the following ambiguity set:

P = {P = P(Ξ)|EP[fj(ξ̃)] ≤ γj, ∀j ∈ {1, . . . , J}] (3.4)

where

i γj are scalars;

ii fj : Ξ −→ R are submodular functions with polynomial time evaluation oracle;

iii Ξ =
∏N

i=1 Ξi, with Ξ : i ⊂ R is discrete and finite.

The idea is to model in this way only the second stage decision. We can reformulate
the problem 3.1 in a distributionally robust way:

max
y∈Y

min
ξ∈Ξ(w,ξ̄)

ξty → max
y∈Y

min
P∈Q(w,ξ̄)

Eξ∼P[ξ
ty] (3.5)

We note that ξty is in the form of maxk∈{1,...,K}(a
t
k(y)ξ+ bk(y)) with K = 1, atk(y) = y

and bk(y) = 0.
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We need to define Q to model the fact that ξ ∈ Ξ(w, ξ̄). The set Ξ(w, ξ̄) can be defined
as

Ξ(w, ξ̄) = {ξ ∈ RN : ξi = ξ̄i∀i such that wi = 1} (3.6)

Q, which models the distribution that ξ can assume, includes all distributions with
marginals i fixed for wi = 1. In some sense, it is a Fréchet ambiguity set but with only
some marginals fixed. The paper Natarajan et al. 2023 includes an example of marginal
ambiguity set in formulation 3.4 in remark (b) of section 3 (page 12).

We can define

Q(w, ξ̄) = {P ∈ P(
∏
i∈[N ]

Ξi)|Eξ∼P[1ξi=ξ̄i ] ≤ 1,Eξ∼P[−1ξi=ξ̄i ] ≤ −1,∀i such that wi = 1}

(3.7)
Note that 1ξi=ξ̄i is both submodular and supermodular since it is a univariate function.
There are two things to look at:

1. define
∏

i∈[N ] Ξi;

2. address the fact that we have a maximization and not a minimization problem.

For 2. we can easily put a − in front of the objective and the properties should remain
the same:

min
y∈Y

max
P∈Q(w,ξ̄)

Eξ∼P[−ξty] (3.8)

For 1., we need to consider the fact that the support of the distributions in Q(w, ξ̄) is
in {ξ ∈ RN : Aξ ≤ b}.

Since, we cannot write {ξ ∈ RN : Aξ ≤ b} in the form
∏

i∈[N ] Ξi, the idea is to take Ξi

as discrete segments (sufficiently big to meet the problem requirements), and then write
the constraints Aξ ≤ b as probability constraint of the form

P(Aξ ≤ b) = 1 if ξ ∼ P (3.9)

To meet the formulation from Natarajan et al. 2023, we have to express 3.9 as the
expectation of a submodular function.

The function f̃(ξ) = Aξ − b is submodular, since it is linear. We can therefore add
the constraint:

E[f̃(ξ) = (Aξ − b)] ≤ 0 (3.10)

The ambiguity set therefore becomes

Q(w, ξ̄) = {P ∈ P(
∏
i∈[N ]

Ξi)|Eξ∼P[1ξi=ξ̄i ] ≤ 1,Eξ∼P[−1ξi=ξ̄i ] ≤ −1,∀i such that wi = 1,

Eξ∼P[f̃(ξ) = Aξ − b] ≤ 0}
(3.11)

where Ξi are discrete segments.
In the formulation



32 CHAPTER 3. APPLICATIONS TO SENSOR PLACEMENT

min
y∈Y

max
P∈Q(w,ξ̄)

Eξ∼P[−ξty] (3.12)

this problem is therefore solvable in polynomial time using the results from Natarajan
et al. 2023.

3.1.3 Second Approach

The second possible research direction is to write the entire sensor placement problem
using submodularity. In fact, we can replace the decision vector w with a set S, where
S = {i : wi = 1}. We can thus write the set function:

f(S, ξ̄) := max
y∈Y

min
ξ∈Ξ(S,ξ̄)

ξty (3.13)

The idea is to use the submodularity property on the set S to prove tractability of the
maximization problem, similarly at what is done in the paper Staib et al. 2018.

We take the idea from the example of influence maximization in section 2.1.

Remark 83. In the example, the uncertainty is on a different variable (E), than the variable
with respect of which we have submodularity (S), as in our case.

In the same way, we define

fSPO(S) = f(S; ξ̄) (3.14)

and then consider the distribution induced by the uncertainty of ξ̄ on the function
fSOP and obtain a distributionally robust maximization problem:

max
S⊆N
|S|≤B

inf
Q∈Q

Ef∼Q[fSPO(S)] (3.15)

which is analogous in the form to the problem (1) in the paper Staib et al. 2018.
However, to apply the tractability results, we need to know the following.

1. a fSPO which is submodular in S;

2. an opportune ambiguity set Q.

For 1., we may need to find a new formulation of the problem, from literature or from
scratch, but we can first of all use the problem as we already formulated it, so

(fSPO(S) =)f(S, ξ̄) := max
y∈Y

min
ξ∈Ξ(S,ξ̄)

ξty (3.16)

We want to prove diminishing returns in S, i.e.

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ), ∀S ⊂ T ⊆ N , i ∈ N \ T (3.17)

Since f measures the rewards, this property, intuitively, means that the marginal gain
of adding a new sensor diminishes as the number of sensors increases. For example, if I
go from 0 to 1 sensor, I gain more than going from n− 1 to n sensors (with |N | = n).

It seems plausible, but it is not trivial to prove it and to prove that it is always like
this (independently of S and T ).
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Equivalently, we could try to prove

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), ∀S, T ⊆ N (3.18)

which intuitively means that if we have two (independent) journeys, it is better to
place sensors on S for the first and T on the second rather than S ∪ T for the first and
S ∩ T for the second. It is still not trivial to prove. . .

Since S only affects the definitions on Ξ(S, ξ̄) a possible idea could be to exploit the
structure of Ξ(S, ξ̄) and the property of the min.

How is Ξ(S, ξ̄) defined? Intuitively, we can think of Ξ(S, ξ̄) as a set of vectors ξ in RN ,
where the indices ξi for i ∈ S are fixed and some correlations between the elements of ξ
are fixed by the constraint Aξ ≤ b.

Is therefore obvious that the cardinality of Ξ(·, ξ̄) is monotone, i.e.

| Ξ(S, ξ̄) |≥| Ξ(T, ξ̄) |, S ⊆ T (3.19)

An analogous argument can be used to study supermodularity of the function | Ξ(·, ξ̄) |.
If all ξi elements of ξ were independent, adding another element in S, i.e. considering
Ξ(S ∪ {i}, ξ̄), would reduce the cardinality of Ξ(S) independently of S (just fixes ξi and
the others elements would continue a vary in the same way). Introducing the correlation
in the constraint Aξ ≤ b, we have that each index fixed ξi, also reduces the uncertain set
for some of the other elements ξj, j ̸= i.

If we consider the case in which we go from Ξ(S, ξ̄) to Ξ(S ∪ {i}, ξ̄), we would have
that the reduction in cardinality of the uncertain set is bigger if S is smaller, because
bigger S means that the set of possible values of ξi is smaller and therefore fixing it will
reduce less the cardinality of Ξ(S, ξ̄). It follows the supermodularity of the cardinality in
the form:

| Ξ(S ∪ {i}, ξ̄) | − | Ξ(S, ξ̄) |≤| Ξ(T ∪ {i}, ξ̄) | − | Ξ(T, ξ̄) |, S ⊆ T, i /∈ S ∪ T (3.20)

From the supermodularity of the cardinality it easily follows the submodularity of the
minimum by the fact that the minimum is monotonically not increasing in the set of
definition.

It follows that f̃y(S; ξ̄) := minξ∈Ξ(S,ξ̄) ξ
ty is submodular in S, fixed y. However the

pointwise maximum of submodular functions is not submodular, so f(S; ξ̄ == maxy∈Y minξ∈Ξ(S,ξ̄) ξ
ty

is not guaranteed to be submodular.
Also the point 2. rises some difficulties, since the ambiguity set is not clear in our

case.
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Conclusion

This report has examined the use of submodularity in developing tractable formulations
of distributionally robust optimization (DRO) problems. We first provided an overview
of both DRO and submodularity, then presented the state-of-the-art on how submodular
and supermodular properties can be exploited in this context. In particular, we focused
on conditions under which such properties enable the design of efficient solution methods.

We found that the literature in this field is active but still developing, with several
possible uses of submodularity—both in the definition of the objective function and in
the construction of the ambiguity set. We also observed that supermodularity plays an
important role, often providing complementary perspectives to submodular optimization.
Alongside the presentation of theoretical and methodological results, we reviewed a range
of applications, including some of the most well-known problems in operations research.

We concluded by suggesting potential applications to the sensor placement problem,
outlining how it is formulated in the literature and how it might be addressed using
existing results. This final chapter does not yet offer a complete and systematic approach
to the problem, which naturally suggests directions for future research—starting with a
full formulation of the sensor placement orienteering problem that leverages submodular
or supermodular structure.

More broadly, this review opens avenues for a deeper exploration of submodularity
in the context of DRO, bringing together results from a promising and dynamic area.
This includes identifying new applications—both in simplified “toy” models and in real-
world settings—and developing new methodologies that can unify and generalize existing
isolated results.

In summary, this work provides a comprehensive review of the current state of sub-
modularity in DRO. While substantial progress has been made, addressing the highlighted
limitations and pursuing the proposed research directions could lead to a richer under-
standing of the interplay between these fields, ultimately enabling the development of
more efficient and realistic methods for optimal decision-making under uncertainty.
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