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Abstract

Causal statistics often necessitate sensitivity analysis to account for uncertainties and
unmeasured confounders in estimating causal effects. Recently, a novel optimization-
based sensitivity analysis framework was introduced, relying on solving two stochastic
optimization problems where random variables are replaced by data-derived estimators.
This framework highlights the importance of understanding the consistency properties of
the optimal values of the problems, particularly as they depend on the consistency of the
estimators.

In this report, we present an overview of the problem, existing theoretical results, and
the analysis conducted during the internship. We developed a methodology to examine
the consistency properties of the optimal values of these stochastic optimization problems
and identified conditions under which consistency is guaranteed in the specific context of
the sensitivity analysis framework. This work offers a foundational example that could
inspire broader investigations into consistency properties in stochastic optimization.
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Introduction

In the following report we summarize the work done during a summer internship conducted
at the Statistical Laboratory of the University of Cambridge along a visiting period of 5
weeks. The project was built upon the paper of Freidling and Zhao, Optimization-based
Sensitivity Analysis for Unmeasured Confounding using Partial Correlations, [2] and this
report made use of the works in bibliography as well as some manuscript notes written
by Tobias Freidling, who contributed directly to the work.

Motivations

Causal inference is a cornerstone of modern statistics, focusing on the estimation of cause-
and-effect relationships between variables. Unlike traditional statistical approaches, which
are often limited to uncovering correlations, causal inference aims to uncover the mech-
anisms driving these associations. The ability to accurately estimate causal effects is
critical across a range of disciplines, from medicine and biology to economics and social
sciences, where it informs evidence-based decision-making and policy design.

However, establishing causal relationships is fraught with challenges. One of the most
significant is the problem of unmeasured confounders—hidden variables that influence
both the treatment and the outcome, potentially biasing estimates of causal effects. For
instance, in observational studies, it is rarely possible to measure every factor that could
influence both a treatment (e.g., a drug) and its outcome (e.g., patient recovery). This
introduces uncertainty and necessitates additional methods to account for the confounding
effect of these hidden variables.

A common approach to address unmeasured confounding is the use of randomized
controlled trials (RCTs), where subjects are randomly assigned to treatment and control
groups. This randomization ensures that confounders are evenly distributed across groups,
mitigating their effect. While powerful, RCTs have significant limitations: they can be
costly, time-consuming, ethically questionable in certain scenarios, and often impractical
for large-scale or complex systems. Thus, while RCTs are considered the gold standard,
they are not always feasible or efficient.

To address the challenges of observational data and unmeasured confounders, sen-
sitivity analysis has emerged as a critical tool in causal inference. Sensitivity analysis
measures the robustness of causal estimates to potential violations of assumptions, such
as the presence of hidden confounders. By quantifying how sensitive a causal conclusion
is to these unmeasured factors, researchers can better understand the reliability of their
findings.

Recently, a novel optimization-based sensitivity analysis framework was proposed by
Freidling and Zhao in [2], which introduces a new paradigm for addressing unmeasured
confounding. This framework leverages stochastic optimization techniques to bound the
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causal effect of interest. The methodology works by formulating two optimization prob-
lems, representing the minimum and maximum possible values of the causal effect under
a set of plausible assumptions about the unmeasured confounder. By solving these prob-
lems, the framework defines a range—known as the partially identified region—within
which the true causal effect likely lies. This approach provides a more structured and
quantitative alternative to traditional sensitivity analyses, offering actionable insights
even in the presence of significant uncertainty.

Contributions

This report builds upon the optimization-based sensitivity analysis framework by in-
vestigating the consistency properties of the stochastic optimization problems involved.
Specifically, the focus of this study is on understanding the conditions under which the
optimal values of these problems are consistent with the underlying data estimators. This
consistency analysis is crucial for validating the reliability of the framework’s sensitivity
measures and extending its applicability.

The work presented here includes a detailed review of the theoretical background, a
methodology for examining consistency properties, and the derivation of sufficient con-
ditions for consistency in the context of sensitivity analysis. By combining statistical
and optimization perspectives, this study contributes a foundational example for further
research into consistency in stochastic optimization.

The structure of this report is as follows: chapter 1 provides the statistical and opti-
mization background necessary to understand the problem; chapter 2 presents the core
analysis, including the results and insights obtained during the project; chapter 3 con-
cludes the report with a summary of findings and directions for future work.



Chapter 1

Background

1.1 Sensitivity Analysis Framework

1.1.1 Causal Problem

The problems of statistical study of stochastic optimization problems we addressed arises
from a paper of Freidling and Zhao [2]. In the paper, the authors proposed a sensitivity
analysis framework based on a stochastic optimization problem. In this section we will
present the framework and its construction and discuss the optimization problem it arises.

We consider a setting where we have a sample (Ui, Vi)
n
i=1 drawn i.i.d. from a population

with distribution PV,U = P. We denote with V the variables observed and we indicate
with PV its marginal distribution, while U represents an unmeasured confounder. The
main purpose is to measure the causal effect of an observed treatment variable D to an
observed outcome Y ; the non triviality of this problem lies in the fact that the confounder,
for definition, influences both the treatment and the outcome, and is unobserved. The
basic model is therefore composed of the observed V = (Y,D,X) where D is a treatment
variable, Y is the outcome variable and X is covariate, i.e. an independent variable that
can influence the outcome but not of direct interest. The variables are then connected in
causal relationships as shown in figure 1.1.

U

D Y

X

Figure 1.1: Causal diagram of the relationships between U , D, Y , and X.

The causal effect we would like to study is the one of the treatment D on the outcome
Y , and thus try to eliminate the effect of covariate X and confounder U .

7
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Our model can be made more accurate by including also an observed instrumental
variable Z for D. We refer to Z as a valid instrument for D if:

(i) Z is an independent predictor of D, i.e. RZ∼D|X ̸= 0;

(ii) Z is partially uncorrelated with the unmeasured confounder U , i.e. RZ∼U |X = 0;

(iii) Z has no influence on the outcome Y not mediated by D, i.e. RY∼Z|X,U,D = 0,

We observe that condition (i) depends only on the observed data V and can therefore
be directly verified. Conditions (ii) and (iii), on the other hand, rely also on the unmea-
sured confounder U , so they require sensitivity analysis, which means that we must verify
if the conditions are robust to variations of U .

The resulting model, that is the one we will refer to in our analysis, comprehends as
observed variable V = (Y,D,Z,X) and has causal diagram represented in figure 1.2.

U

D YZ

X

Figure 1.2: A causal diagram with an additional variable Z affecting D and influenced
by X.

In the figure, note that condition (i) of Z being a valid instrument is represented in
the edge going from Z to D, while the absence of edges from U to Z and from Z to Y
that express conditions (ii) and (iii).

1.1.2 Graph Interpretation

In the paper [2], the aim is to produce a sensitivity measure of the causal effect of D
on Y , which eliminates the dependence by the other observed variables X and Z and
by the unmeasured confounder U . This is done by conducting inference on a functional
β = β(PV,U) which measures the causal effect of interest.

To obtain a measurable quantity from the causal model described in the section before,
we can translate the causal diagram of figure 1.2 in algebraic relations, using the matrix
algebra for graphical statistical models described in [4].

In particular, a causal graph corresponds to a linear system, which it means that the
variables (V, U) = (Y,D,Z,X, U) satisfy the relation(

V
U

)
= bt

(
V
U

)
+ E (1.1)
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where b is a vector of coefficients and E is a random gaussian vector of mean 0 and
covariance matrix Λ which represents a random noise. b and Λ are determined using a
weight function σ relative to the graph, whose properties are more thoroughly described
in [4].

To obtain b and E, the weight function is applied respectively toW [V −→ V ], the ma-
trix of one-directional edges, where every entry is the set of edges from two corresponding
random variables, and W [Y ←→ V ], the matrix of bidirectional edges. In formula:

b = σ(W [V −→ V ]) (1.2)

Λ = σ(W [Y ←→ V ]) (1.3)

For our model the matrix of edges, taking the entries in the order Y,D,Z,X, U , are
the following:

W [V −→ V ] =


∅ ∅ ∅ ∅ ∅

{D → Y } ∅ ∅ ∅ ∅
∅ {Z → D} ∅ ∅ ∅

{X → Y } {X → D} {X → Z} ∅ ∅
{U → Y } {U → D} ∅ ∅ ∅

 (1.4)

For the bidirectional edges matrix, we consider a loop for each variable, so we obtain
the following:

W [Y ←→ V ] =


{Y → Y } ∅ ∅ ∅ ∅

∅ {D → D} ∅ ∅ ∅
∅ ∅ {Z → Z} ∅ ∅
∅ ∅ ∅ {X → X} ∅
∅ ∅ ∅ ∅ {U → U}

 (1.5)

The weight function σ works entry-wise assigning a weight to each walk and we then
use them to define the system as in (1.1). We therefore obtain a system of equations
for Y,D,Z,X, U . The ones we are interested in are Y and D, since we are studying the
causal effect of the latter on the former. The corresponding equations will be of the form

Y = bD,YD + bU,YU + bX,YX + EY (1.6)

D = bZ,DZ + bX,DX + bU,DU + EU (1.7)

where EY and EU are two random variables normally distributed with mean 0 and
variance respectively λY,Y and λU,U .

We are interested in measuring the causal effect ofD on Y . This is done by determining
the coefficient of D in the decomposition (1.6), once excluded the effect of the covariate
X and of the confounder U . We can obtain the component of Y which does not depend
on X and U by computing the residual of Y after regressing out X and U .

In general, we define the residual of a random variable S after regressing out another
random variable T , as

S⊥T := S − T t var(T )−1 cov(S, T ) (1.8)
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We can interpret this residual as the coefficient of the regression of S on T ; therefore
the residual S⊥T represents S without the linear effect of T on S. Since we are considering
linear dependence of variables connected by a causal relation, eliminating the linear effect
corresponds to eliminating the effect of the variables.

Reversing the formula 1.8, we obtain the following decomposition of the random vari-
able S:

S = S⊥T + T tV ar(T )−1cov(S, T ) (1.9)

In this formulation, it becomes clear that var(T )−1 cov(S, T ) is the coefficient of U in
the decomposition of S in the direction parallel to T .

Applying the decomposition in our case from equations 1.6 and 1.7, we can write:

D = D⊥U,X + bU,DU + bX,DX (1.10)

And thus

Y = Y ⊥U,X + bU,YU + bX,YX (1.11)

where D⊥X,U is included in the term Y ⊥U,X .
For the definition given in 1.8, we have that β := var(D⊥X,U)−1 cov(Y ⊥X,U , D⊥X,U) is

the coefficient of D⊥X,U in the decomposition of Y ⊥X,U , i.e.:

Y ⊥X,U = βD⊥X,U + b̃XX + b̃UU (1.12)

Thus, combining 1.12, 1.10 and 1.6 we have that

Y = βD + bX,YX + bU,YU (1.13)

Comparing 1.6 and 1.13, it becomes clear that

bD,Y = β =
Cov(Y ⊥X,U , D⊥X,U)

V ar(D⊥X,U)

Since the coefficient in the linear model corresponds to the causal effect, we have that
so-defined β is the sensitivity measure we are looking for. We also note that β = β(PV,U),
i.e. β depends on PV,U .

1.1.3 R-values

The idea to build the sensitivity model is then to rewrite β in terms of R- or partial
R-values, which are more tractable objects.

First of all, we state the corresponding definitions, that make use of the residual
defined in the precedent section:

Definition 1.

RY∼X :=

√
1− var(Y ⊥X)

var(Y )
(1.14)

RY∼X|Z := corr(Y ⊥Z , X⊥Z) (1.15)

We also define the R2 and partial R2-values
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Definition 2.

R2
Y∼X := 1− var(Y ⊥X)

var(Y )
(1.16)

R2
Y∼X|Z :=

R2
Y∼X+Z −R2

Y∼X

1−R2
Y∼Z

(1.17)

We easily see that R2
Y∼X = (RY∼X)

2. The relationship between the partial R- and
R2-values comes from the following:

Proposition 3. If X is a one-dimensional random variable, it follows that R2
Y∼X|Z =

(RY∼X|Z)
2.

The R and partial R-values can be written in terms of the covariance matrix Σ, i.e.
given X1, . . . , Xp random variables, the matrix for which (Σ)i,j := cov(Xi, Xj) if i ̸= j
and (Σ)i,i := var(Xi).

To this regard we can easily show that

RY∼X = corr(X, Y ) :=
cov(X, Y )√
var(X) var(Y )

(1.18)

The argument is the following:

RY∼X =

√
var(Y )− var(Y ⊥X)

var(Y )

=

√
var(Y )− var(Y +X t var(X)−1 cov(X, Y ))

var(Y )

=

√
var(Y )− var(Y )− var(X) var(X)−2 cov(X, Y )2

var(Y )

=
cov(X, Y )√
var(X) var(Y )

If we have a collection of variables X1, X2, . . . , Xp, we can therefore write RXi∼Xj
=

(Σ)i,j.
We can rewrite also the partial R-values in terms of the covariance matrix Σ with

some more effort: given X1, . . . , Xp, we consider RXi∼Xj |XI\{i,j} , with I ⊆ [p] := {1, . . . , p}
and i, j ∈ I.

We then define
ΩI
ij := (EIei)

T (ET
I Σ(ψ)EI)

−1(EIej), (1.19)

where ek ∈ Rp has 1 at its k-th component and 0 everywhere else; EI ∈ Rp×|I| is the
matrix that selects the columns corresponding to I, for instance if I = {1, 2, 3}, then

EI =

(
I3×3

0

)
. (1.20)

So, to get ΩI
ij, we first subset the matrix Σ, then invert it and then take the entry that

corresponds to (i, j) in the full matrix. The partial correlation of Xi and Xj given XI\{i,j}
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can be expressed as

gIij(ψ) = RXi∼Xj |XI\{i,j} = −
ΩI
ij√

ΩI
iiΩ

I
jj

. (1.21)

To go on with of our sensitivity model, we can rewrite β in terms of R- and partial
R-values: in this way we can distinguish the terms that do not depend on U and that
we can summarize in a factor θ(PV ) and the terms which depend also on U in the factor
ψ(P(U, V )). In the paper [2] there are shown the details of how to write β in terms of the
R-values. For our scope the important thing to note is that we can rewrite β as:

β = β(ψ(PU,V ), θ(PV )) (1.22)

where the parameter ψ is function of R- and partial R-values which contain the un-
known confounder U .

1.1.4 Optimization Problem

Our aim is then to conduct inference on the parameter β = β(ψ(PU,V ), θ(PV )). Obviously
we can estimate observable term θ(PV ), but not on the unobserved factor included in
ψ(PU,V ).

We make the assumption to be in a partially identified setting, i.e.

ψ ∈ Ψ(θ)

where as Ψ(θ) is a set depending on θ.
We are restricting to a range of possible values for the unobserved term ψ. Therefore,

we can define a region of possible values of β for corresponding values of ψ. This is called
partially identified region (PIR) and is defined as

PIR(PV ) := {β(θ(PV ), ψ) : ψ ∈ Ψ(θ(PV ))}

We also assume that β ∈ R. In this way we can bound the sensitivity parameter by
the optimal values of the two following optimization problems:

min/max β(θ(PV ), ψ) (1.23)

subject to ψ ∈ Ψ(θ(PV )) (1.24)

To define the optimization problem we will write explicitly the constraints that de-
termine Ψ(θ), that will also be the object of our analysis. In particular, as we said, ψ is
function of R- and partial R-values which include the unknown confounder U . The con-
straints are thus defined in term of inequalities of them. We will consider the constraints
in table 1.1, taken from table 1 in the paper [2], based on corresponding edges in the
causal diagram.

As we see the constraints are inequality constraints on partial R-values or relation
constraints on partial R2-values. We note also that in the specification of the constraints
we introduced the variables X̃ and Ẋ. These are a decomposition of the random vector
X = (Ẋ, X̃), where Ẋ indicates the variables in X that do not have influence on U , while
with X̃, we indicate variables in X that can have influence on U . In terms of causal
diagram, this leads to a situation as in figure 1.3.
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Table 1.1: Specification of the Sensitivity Model

Edge Sensitivity Bound
U → D 1. RD∼U |X,Z ∈ [Bl

UD, B
u
UD]

2. R2
D∼U |X̃,ẊI ,Z

≤ bUDR
2
D∼ẊJ |X̃,ẊI ,Z

U → Y 1. RY∼U |X,Z,D ∈ [Bl
UY, B

u
UY]

2. R2
Y∼U |X̃,ẊI ,Z

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z

3. R2
Y∼U |X̃,ẊI ,Z,D

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z,D

U ↔ Z 1. RZ∼U |X ∈ [Bl
UZ, B

u
UZ]

2. R2
Z∼U |X̃,Ẋ−j

≤ bUZR
2
Z∼Ẋj |X̃,Ẋ−j

Z → Y 1. RY∼Z|X,U,D ∈ [Bl
ZY, B

u
ZY]

2. R2
Y∼Z|X,U,D ≤ bZYR

2
Y∼Ẋj |X̃,Ẋ−j ,Z,U,D

U

D YZ

X̃ Ẋ

Figure 1.3: A causal diagram with X̃ influencing D, U , and Y , and Ẋ influencing D and
Y .

In terms of R-values, this translates to the constraint:

R2
U∼Ẋ|X̃,Z = 0 (1.25)

We will also let only the variables in Ẋ to be in front of the conditioning in the
R2-values constraints.

Once defined the constraints of the optimization problem, we conduct inference on the
sensitivity parameter β by including the data from the observations of V in an estima-
tor θ̂ of the parameter θ(PV ). We plug-in the estimator θ̂ and then solve the resulting
optimization problem:

min/max β(θ̂, ψ)

subject to ψ ∈ Ψ(θ̂)

If the estimator θ̂ is consistent we have that θ̂ → θ for the number of samples n −→∞
The real distribution of the statistic θ̂, given the observed data, is then approximated

through a bootstrap approach. We produce a collection of bootstrapped estimators
ˆ̂
θ and

then solve the optimization problem for each of them finding the optimal value
ˆ̂
β. We
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have consistency of the bootstrap approximation, in the sense that the distribution of
ˆ̂
θ

converges to θ̂ growing the number of bootstraps.

In both cases the question that naturally arises is the consistency of the optimal values
obtained, i.e. whether we can say that the optimal values of the approximate problems,

β̂ and
ˆ̂
β, converge to the real optimal value β of 1.23.

In general the problem that arises is: knowing that we have the convergence of a
statistic tn −→ t (in some sense), called βn the optimal value of the optimization problem

min β(tn, ψ)

s.t. ψ ∈ Ψ(tn)
(1.26)

and β the optimal value of

min β(t, ψ)

s.t. ψ ∈ Ψ(t)
(1.27)

under which hypothesis does βn −→ β (in some sense)? And, in particular, does it
converge in our sensitivity analysis setting?

1.2 Optimization Results

To address the consistency problem we can rely on some relevant results from optimization
theory and try to verify the hypothesis under which consistency of the optimal value holds.
The results are contained in the work [3] and in the book [1].

In this section we will consider a general stochastic optimization problem, in the form:

ν(u) = min
x∈Rk

f(x, u) subject to gi(x, u) = 0, i = 1, . . . , q;

gi(x, u) ≤ 0, i = q + 1, . . . , p,

where u will represent an element in Rk′ and we will assume that f and the gi are
smooth enough (or convex).

In order to study consistency of the optimal value, we will consider the approximate
problem substituting u with ûn:

ν(ûn) = min
x∈Rk

f(x, ûn) subject to gi(x, ûn) = 0, i = 1, . . . , q;

gi(x, ûn) ≤ 0, i = q + 1, . . . , p,

where ûn is a consistent estimator of u. We can consider the approximated problem of
a sample average approximation of the real one, i.e. ûn = 1

n

∑n
i=1 ui with ui i.i.d. samples

of u, to take advantage of the sample average approximation.

1.2.1 Consistency Results

We would like to find the hypothesis under which consistency results hold. To do so, we
first introduce some definitions:

Definition 4. Let X and Y be vector (linear) normed spaces and g : X → Y .
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The function g is directionally differentiable at x ∈ X in a direction h ∈ X, if for any
sequence tn ↓ 0, the limit

g′(x, h) := lim
n→∞

g(x+ tnh)− g(x)
tn

exists. If the directional derivative exists in every direction and is linear and continuous
in h, g is called Gâteaux differentiable.

The function g is Hadamard directionally differentiable at x ∈ X in a direction h ∈ X,
if for any sequences hn → h and tn ↓ 0, the limit

g′(x, h) := lim
n→∞

g(x+ tnhn)− g(x)
tn

exists. If the directional derivative exists in every direction and is linear in h, g is called
Hadamard differentiable. (g is automatically continuous.)

The function g is Fréchet directionally differentiable at x, if it is directionally differ-
entiable at x and

g(x+ h) = g(x) + g′(x, h) + o(∥h∥), h ∈ X.
If g′(x, ·) is also linear and continuous, g is called Fréchet differentiable.

Clearly, Hadamard (dir.) differentiability or Fréchet (dir.) differentiability imply
Gâteaux (dir.) differentiability. If X is finite dimensional, Hadamard directional differen-
tiability implies Fréchet directional differentiability. Moreover, if g is Fréchet directionally
differentiable and g′(x, ·) is continuous, then g is also Hadamard directional differentiable.
In particular, Fréchet differentiability implies Hadamard (directional) differentiability.

If a function is not directionally differentiable, we may still be able to define upper
and lower “bounds”.

Definition 5. Let f : X → R̄ be an extended real valued function and x ∈ X such that
f(x) is finite. The upper and lower directional derivatives of f at x in direction h are
defined as

f ′
+(x, h) := lim sup

t↓0

f(x+ th)− f(x)
t

f ′
−(x, h) := lim inf

t↓0

f(x+ th)− f(x)
t

The function f is directionally differentiable at x in direction h if f ′
+(x, h) and f

′
−(x, h)

are equal. We can define upper and lower Hadamard directional derivatives analogously.

Definition 6. Let X be a Banach space, S ⊂ X and x ∈ S. Then, the contingent
(Bouligand)/tangent cone is given by

TS(x) = {h ∈ X : ∃ tn ↓ 0: dist(x+ tnh, S) = o(tn)} = {h ∈ X : ∃ tn ↓ 0, ∃hn → h : x+ tnhn ∈ S ∀n ∈ N}.

We will also use the following notion of convergence:

Definition 7. Given {XN}N , X random elements in a Banach space B, we say, when it
makes sense, that XN converges weakly to X, XN =⇒ X as N →∞, if

E[f(XN)]→ E[f(X)] (1.28)

as N →∞, for every f : B → R bounded and continuous.
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To guarantee consistency we will then use mainly two different results. The first is
the continuous mapping theorem and is stated as follows:

Theorem 8. Let S and S ′ metric spaces and {Xn}n≥1 random elements on S. Suppose
g : S → S ′ continuous a.s., then

i Xn
d−→ X ⇒ g(Xn)

d−→ g(X);

ii Xn
P−→ X ⇒ g(Xn)

P−→ g(X);

iii Xn
a.s.−−→ X ⇒ g(Xn)

a.s.−−→ g(X).

It is clear that a possibility to show consistency is to use this theorem with ν as
g and ûn, u as Xn, X. Therefore, proving that ν is continuous will guarantee that the
convergence of the estimator implies convergence of the optimal value.

Another important result to prove consistency is the following theorem, known as
Delta method.

Theorem 9. Let B1 and B2 Banach spaces, equipped with their Borel σ-algebras, {Yn}n≥1

a sequence of random elements of B1, g : B1 → B2 a mapping and τn a sequence of positive
numbers tending to infinity. Suppose that B1 is separable, g is Hadamard directionally
differentiable at a point µ ∈ B1, and that Xn := τn[Yn − µ] converges weakly to a random
element Y of B1. Then

τn[g(Yn)− g(µ)] =⇒ g′µ(Y )

and

τn[g(Yn)− g(µ)] = g′µ(Xn) + oP(1)

The idea is to apply the Delta theorem to our optimization problem, taking as Yn the
optimal solution ûn of the approximated problem and as G the function ν which gives the
optimum value of our stochastic problem. We therefore need to choose τn and µ as in the
theorem, such that τn(ûn − µ) converges in distribution. To to so we can take advantage
of the central limit theorem in the following formulation.

Theorem 10. Let {Xn}n≥1 ⊂ L2 i.i.d. with µ = E[X1] and σ
2 = V ar(X1) ≥ 0, then

Sn/n− µ√
n

:=
X1+X2+···+Xn

n
− µ

√
n

=⇒ Y ∼ N (0, σ2) (1.29)

Therefore, by choosing τn =
√
n and µ = u, we have for CLT that

√
n(ûn − u) =⇒

Z ∼ N (0, σ2). If we have that ν is Hadamard differentiable, the Delta theorem, gives us
the consistency we would like to prove, namely

√
n(ν(ûn)− ν(u)) =⇒ ν ′u(Z) (1.30)

The main problem is therefore to prove Hadamard differentiability for the function ν
which maps the optimal value to the parameter of the optimization problem.
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1.2.2 Constraint Qualifications

In order to define sufficient condition for continuity and Hadamard differentiability for
the optimal value function ν(·) of the problem we introduce the concept of constraint
qualification.

Constraint qualifications (CQ) are regularity conditions for the analytic description of
sets. In that sense, they assess how well inequalities and equations describe a geometric
object. There are two reasons why constraint qualifications can be violated: (1) the set
we try to describe is very complicated, (2) our description is bad.

For instance, we can describe the non-negative real numbers [0,∞), via the inequalities
{x ∈ R : x ≥ 0}, {x ∈ R : x3 ≥ 0}, or even {x ∈ R : x ≥ 0, x3 ≥ 0}. The last description
is obviously redundant (and in that sense bad); for more complex sets, however, it may
not be that obvious.

Let X, Y and U be Banach spaces, K a closed convex subset of Y and G : X×U → Y
a continuous function. We consider the set

Φ(u) = {x ∈ X : G(x, u) ∈ K}.

In our case, G(x, u) ∈ K boils down to the usual equality and inequality constraints by
taking G as a function that takes values in Rq+p and K = {0}q × (−∞, 0]p.

Definition 11. Robinson’s constraint qualification (RCQ) holds at a point x0 ∈ X such
that G(x0, u0) ∈ K, with respect to the mapping G(·, u0) and the set K, if

0 ∈ int{G(x0, u0) +DxG(x0, u0)X −K}.

Theorem 12. Let x0 ∈ Φ(u0) be such that RCQ holds. Then, for all (x, u) in a neigh-
bourhood of (x0, u0), one has

dist(x,Φ(u)) = O(dist(G(x, u), K)).

This means that the geometric distance between x and the set Φ(u) on the left hand
side can be controlled by the analytic distance (how much does x violate the inequality
and equality constraints) on the right hand side.

When we aren’t interested in pertubation analysis, i.e. we do not have the dependence
from u, the constraints are given by a function G : X → Y , so we don’t have the space
U . For this setting, a lot of theory on constraint qualifications has been developed. Here
are some important results.

Corollary 13. If G : X → Y is continuously differentiable at a point x0 ∈ Φ := G−1(K)
and Robinson’s CQ holds, then

TΦ(x0) := {h ∈ X : DG(x0)h ∈ TK(G(x0))}. (1.31)

This means that we can describe the tangent cone at x0 via the derivative of G. (TK
is usually a simple object.)

Definition 14. If G : X → Y is continuously differentiable mapping and Φ is given by

Φ = {x ∈ X : gi(x) = 0, i = 1, . . . , q; gi(x) ≤ 0, i = q + 1, . . . , p}, (1.32)
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then Robinson’s CQ is equivalent to the Mangasarian-Fromovitz (MF) CQ:

Dgi(x0), i = 1, . . . , q, are linearly independent,

∃h ∈ X : Dgi(x0)h = 0, i = 1, . . . , q

Dgi(x0)h < 0,∀ i ∈ I(x0),

where I(x0) are the active inequalities at x0.
If we strengthen the assumptions and demand that the derivatives of all equality and

active inequality constraints are linearly independent, we obtain the Linear independence
constraint qualification (LICQ).

Definition 15. The (generalized) Slater condition is fulfilled, if there exists a point x̄ ∈ X
such that G(x̄) ∈ int(K).

If K is a closed, convex set with nonempty interior and G is convex with respect
to (−K), the Slater condition guarantees metric regularity (2.167). If in addition G is
continuously differentiable, the Slater condition is equivalent to Robinson’s CQ.

The simplest constraint qualification is the requirement that G is a linear function
mapping into Rq+p and K = {0}q × (−∞, 0]p.

1.2.3 Optimization Problem with Perturbation Analysis

When we conduct perturbation analysis both the objective and the constraints can depend
on an an additional parameter u. The goal is to assess how perturbations, that is variations
of u, affect the optimal value (and solutions) of the optimization problem. Here are some
useful definitions.

We consider the optimization problem

min
x∈X

f(x, u) subject to G(x, u) ∈ K, (Pu)

where X, Y, U are Banach spaces, K is a closed convex cone of Y and f and G are
continuous. The feasible set of (Pu) is given by

Φ(u) = {x ∈ X : G(x, u) ∈ K}.

The optimal value and the set of solutions are given by

ν(u) := inf
x∈Φ(u)

f(x, u), S(u) := argmin
x∈Φ(u)

f(x, u).

The dual problem is given by

max
λ∈Y ∗

inf
x∈X

L(x, λ, u)− σ(λ,K), L(x, λ, u) = f(x, u) + ⟨λ,G(x, u)⟩. (Du)

Without any assumptions there is a duality between the primal and dual problem, that
is val(Du) ≤ val(Pu). Moreover, if we change the maximum and infimum in (Du), we get
back (Pu). The set of Lagrange multipliers is given by

Λ(x0, u0) :=
{
λ ∈ Y ∗ : DxL(x0, λ, u0) = 0, G(x0, u0) ∈ K, λ ∈ K−, ⟨λ,G(x0, u0)⟩ = 0

}
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In the common case of finitely many equality and inequality constraints the definition
above turns into

Λ(x0, u0) :=
{
λ ∈ Rq+p : ∇xL(x0, λ, u0) = 0,

gi(x0, u0) = 0, i = 1, . . . , q; gi(x0, u0) ≤ 0, i = q + 1, . . . , q + p,

λi ≥ 0, i = q + 1, . . . , q + p,

λigi(x0, u0) = 0, i = q + 1, . . . , q + p
}

In this case, we can linearize the problem around a point x0 ∈ X, picking also a u0
and a direction d in which we approach u0. These are the linearized problem

min
h∈X

Df(x0, u0)(h, d) subject to DG(x0, u0)(h, d) ∈ TK(G(x0, y0)), (PLd)

and its dual
max

λ∈Λ(x0,u0)
DuL(x0, λ, u0)d. (DLd)

1.2.4 Continuity

As we saw previously, continuity is necessary to use the continuous mapping theorem to
prove consistency of the optimal value.

Establishing continuity of ν seems kind of easy, when f and G are continuous. Yet,
even in very simple cases, this is not true.

To do so, we can however rely on the following:

Proposition 16. Let u0 ∈ U and suppose that

(i) f is continuous on X × U ,

(ii) inf-compactness: There exists α ∈ R and a compact set C ⊂ X such that for all u
in a neighbourhood of u0 the level set

levαf(·, u) := {x ∈ Φ(u) : f(x, u) ≤ α}

is non-empty and contained in C,

(iii) For all neighbourhoods VX of S(u0) there exists a neighbourhood VU of u0 such that
VX ∩ Φ(u) ̸= ∅ for all u ∈ VU ,

then ν is continuous at u0.

Assumption (i) is kind of natural. Assumption (ii) states that f is “well-behaved”,
that is for u close to u0, the solutions will be contained in a compact set. Assumption (iii)
is about the “well-behavedness” of the constraint set Φ(u): If we wiggle u, the solutions for
u0 still need to be close to Φ(u). If Robinson’s CQ holds for all (x0, u0) with x0 ∈ S(u0),
then Assumption (iii) follows.

1.2.5 Differentiability

(Hadamard) differentiability, on the other hand, is an hypothesis to use the Delta method
in order to prove consistency. As for continuity, establishing differentiability should be
easy if f and G are continuously differentiable. Again this is not the case, unfortunately.

Example 1. Take f(x, u) = xu and Φ = [−1, 1]. Then, ν(u) = −|u| which is clearly not
differentiable at 0.
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Fixed Feasible Set

First, we only look at the case where the constraint set doesn’t depend on u, i.e. Φ(u) = Φ
or equivalently G(x, u) = G(x).

Theorem 17. Let u0 ∈ U and d ∈ U a direction. Suppose that f is continuous on X×U
and inf-compactness holds. If in addition

(i) f(x, ·) is (Gâteaux) differentiable for all x ∈ X and Duf(x, u) is continuous on
X × U , then ν is Fréchet directionally differentiable and

v′(u0, d) = inf
x∈S(u0)

Duf(x, u0)d.

(ii) f(x, ·) is concave for all x ∈ X, then ν is Hadamard (quite sure about this) direc-
tionally differentiable and

v′(u0, d) = inf
x∈S(u0)

f ′
x(u0, d).

Variable Feasible Set

In this section, we assume throughout that f and G are continuously differentiable.

Remark 18. A point x ∈ Φ(u) is an ε-optimal solution if, f(x, u) ≤ val(Pu) + ε. This
notion gives us some more generality because sometimes a (0-optimal) solution may not
exist but there is an ε-optimal solution.

Robinson’s CQ at x0 ∈ Φ(u0) implies directional regularity at x0 in direction d ∈ U
for all directions d. This in turn implies Robinson’s CQ for the linearized problem (PLd).

It is relatively easy to establish an upper bound on the directional Hadamard derivative
(if it exists).

Proposition 19. Let u0 ∈ U and assume directional regularity in direction d ∈ U holds
for all x0 ∈ S(u0). Then, the upper Hadamard directional derivative is bounded as follows

v′+(u0, d) ≤ inf
x∈S(u0)

val(PLd) = inf
x∈S(u0)

sup
λ∈Λ(x,u0)

DuL(x0, λ, u0)d.

Establishing a lower bound and directional Hadamard differentiability is considerably
harder. Here are the three main results in the book; note the slightly varying assumptions.

Theorem 20. Let u0 ∈ U and d ∈ U . Suppose

(i) The problem (Pu0) is convex and S(u0) ̸= ∅,

(ii) directional regularity in direction d for all x0 ∈ S(u0),

(iii) For un := u0+ tnd+o(tn), where tn ↓ 0, (Pun) has an o(tn)-optimal solution xn with
a subsequence xnk

such that xnk
→ x0 ∈ S(u0).

Then, the optimal value is Hadamard directionally differentiable at u0 in direction d, and

ν ′(u0, d) = inf
x∈S(u0)

sup
λ∈Λ(u0)

DuL(x, λ, u0)d.

Theorem 21. Let u0 ∈ U and d ∈ U . Suppose
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(i) S(u0) ̸= ∅,

(ii) directional regularity in direction d for all x0 ∈ S(u0),

(iii) For un := u0+ tnd+o(tn), where tn ↓ 0, (Pun) has an o(tn)-optimal solution x̄n such
that dist(x̄n,S(u0)) = O(tn) and it has a subsequence x̄nk

such that x̄nk
→ x0 ∈

S(u0).

Then, the optimal value is Hadamard directionally differentiable at u0 in direction d, and

ν ′(u0, d) = inf
x∈S(u0)

sup
λ∈Λ(x,u0)

DuL(x, λ, u0)d.

Theorem 22. Let u0 ∈ U and d ∈ U . Suppose

(i) Suppose Robinson’s CQ holds for all x0 ∈ S(u0),

(ii) For un := u0+ tnd+o(tn), where tn ↓ 0, (Pun) has an o(tn)-optimal solution xn with
a subsequence xnk

such that xnk
→ x0 ∈ S(u0).

Then, for every direction d

inf
x∈S(u0)

inf
λ∈Λ(x,u0)

DuL(x, λ, u0)d ≤ ν ′−(u0, d) ≤ ν ′+(u0, d) ≤ inf
x∈S(u0)

sup
λ∈Λ(x,u0)

DuL(x, λ, u0)d.

So, there are basically 3 approaches how we can guarantee directional Hadamard dif-
ferentiability: having a convex problem as in Theorem 20, making sure that the solutions
converge quickly enough (that is linearly) as in Theorem 21, having unique Lagrange
multipliers and thus coinciding infima and suprema in Theorem 22.
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Chapter 2

Methodology and Results

In this section we try to put altogether the results from the previous chapter with our
work. We tried to address consistency of the optimization problem 1.26 which arises in the
sensitivity analysis framework. To do so, based on the results of section 1.2, we wanted
to prove under which conditions does MFCQ hold and use the equivalence with RCQ in
order to apply the continuity and differentiability theorems on the optimal value function
β and thus guarantee consistency.

2.1 R-value constraints

We will first of all consider constraints of the form

RXi∼Xj |XI\{i,j} −B
u ≤ 0, −RXi∼Xj |XI\{i,j} +Bl ≤ 0. (2.1)

Obviously, if Bl < Bu, only one of these constraints can be active and to prove MFCQ
(or even LICQ), we need to study only active constraints.

We will express the upper bound constraints RXi∼Xj |XI\{i,j} −Bu ≤ 0 with gIij(ψ) and
use the formulation with the covariance matrix as in equation 1.21. To establish MFCQ,
we need to compute the derivative of gIij(ψ). As an intermediate step, we derive ∇ψΩ

I
ij:

∂ΩI
ij

∂ψk
= 1{k ∈ I} ·

{
−(ΩI

ipΩ
I
kj + ΩI

ikΩ
I
pj) if k ̸= p,

−ΩI
ipΩ

I
pj if k = p.

One of the key steps in showing the result above is the identity

Dx[A
−1(x)] = −A−1(x)(Dx[A(x)])A

−1(x).

Using this, for k ̸= p we obtain

∂gIij
∂ψk

= 1{k ∈ I} 1√
ΩI
iiΩ

I
jj

[
ΩI
ipΩ

I
kj + ΩI

ikΩ
I
pj − ΩI

ij

(
ΩI
pjΩ

I
kj

ΩI
jj

+
ΩI
piΩ

I
ki

ΩI
ii

)]

and for k = p we get

∂gIij
∂ψp

= 1{p ∈ I} 1

2
√

ΩI
iiΩ

I
jj

[
2ΩI

ipΩ
I
pj − ΩI

ij

(
(ΩI

pj)
2

ΩI
jj

+
(ΩI

ip)
2

ΩI
ii

)]
.

23
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Let’s consider the special case where we put constraints on the sensitivity parameters

g̃1 := g
{1,...,p}
1p = RX1∼Xp|X{2,...,p−1} , g̃2 := g

{2,...,p}
2p = RX2∼Xp|X{3,...,p−1} , and so on.

The gradient of g̃l has the form

∇ψg̃l =

0l−1

+
∗p−l.


Where + stands for a positive entry and ∗ for an unkown real entry. This follows from
using the general formula for the derivatives above and assume that the covariance matrix
Σ is positive defined, which allows us to use Cauchy-Schwarz as:

ΩI
iiΩ

I
jj − (ΩI

ij)
2 > 0 (2.2)

Applying it to the case in study we obtain in particular that

∇ψg
{1,...,p}
1p =



a1 > 0
a2
a3
a4
. . .
ap−1

ap


∇ψg

{2,...,p}
2p =



0
b2 > 0
b3
b4
. . .
bp−1

bp


∇ψg

{3,...,p}
3p =



0
0

c3 > 0
c4
. . .
cp−1

cp


(2.3)

The gradients correspond respectively to the upper bound constraints on RY∼U |D,Z,X ,
RD∼U |Z,X and RZ∼U |X ; if we consider the lower bound constraints we need to change signs
of all the elements in the gradient.

For this case we thus have linear independence of the gradient. This is the definition
LICQ, which implies MFCQ.

We note that in this case we only considered upper bound constraint but the argument
does not change if for some (of all) of the above constraint we have that the active
constraint is the lower bound one, e.g. RY∼U |D,Z,X = Bl. In case of lower bounds the
constraint is preceded by a − as in 2.1, so the positive entry in the gradient becomes
negative.

We can also note some further proprieties on the entries of the gradients in 2.3. In
particular,by calculating the derivative we obtain that if we consider upper bound con-
straints:

• ap has the opposite sign as RY∼U |D,Z,X ;

• bp has the opposite sign as RD∼U |Z,X ;

• cp has the opposite sign as RZ∼U |X .

Obviously, if we consider active lower bound constraints the relation is opposite.
However, since we are interested in active constraints, we know the sign of the partial

R-values once we know if the lower or upper bound is active. In particular, we note that
if the upper bound is active, the partial R-value is positive, so the p-th entry is negative,
while if the lower bound is active, the partial R-value is negative, and thus the p-th entry
is still negative.

We can conclude that in any case, both for active upper or lower bound, ap, bp and cp
are negative.
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2.1.1 RY∼Z|D,X,U constraint

We now would like to study the case where there is an active constraint on RY∼Z|D,X,U .
We study the gradient with respect to ψ, which we denote as

∇ψg
{1,...,p}
13 =



d1
d2
d3
d4
. . .
dp−1

dp


Computing the derivatives similarly as the previous section, we obtain that:

• d1 has the opposite sign as RZ∼U |Y,D,X ;

• d3 has the opposite sign as RY∼U |D,Z,X .

Note that, if we consider the upper bound constraints as active, d1 has the same sign
as cp and d3 has the same sign as ap. If we consider some lower bound active constraints,
we may change the signs opportunely.

We would like to find out whether if adding an active constraint on RY∼Z|D,X,U , still
guarantees some constraint qualification, at least under certain hypothesis. Note that if
we have active constraints on RD∼U |Z,X , RZ∼U |X and RY∼Z|D,X,U LICQ still holds, since
we have that d1 ̸= 0 if RZ∼U |Y,D,X ̸= 0.

The case in which we have all four active constraints is more tricky; trying to prove
LICQ seems not to be promising, since we would have four gradients and not much
information on their entries, in particular we would know that only 3 entries are equal to
0. Indeed we can impose linear independence of the gradient vectors, e.g. by imposing
that ∇ψg

{1,...,p}
13 cannot be written in terms of the first three gradients and we obtain that

we need:

dp ̸=
cp
c3
d3 −

b3cp
b2c3

d2 +
c2bp
b2c3

d2 −
a2b3
a1b2

d1 +
a2bp
a1b2

d1 +
a3cp
c3
− ap

Since this condition is of course impractical, we aim to study MFCQ. Essentially the
problem boils down to prove whether a solution h = (h1, h2, h3, h4)

t exists for the following
system of inequalities: 

a1h1 + a2h2 + a3h3 + aphp < 0
b2h2 + b3h3 + bphp < 0

c3h3 + cphp < 0
d1h1 + d2h2 + d3h3 + dphp < 0

We will firstly address the case of all upper bound constraints; other cases are analo-
gous and we will refer to them later. For the previous observations we have that:

• a1 > 0, b2 > 0, c3 > 0;

• ap < 0, bp < 0, cp < 0;

• d1 < 0, d3 < 0.
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To build a solution for the system of inequalities we could proceed this way:

1. We first choose hp such that

hp > 0 if dp < 0, hp < 0 if dp > 0, hp = 0 if dp = 0.

2. We then take h3 such that

h3 < −
cp
c3
hp

So that the third inequality stands.

3. We choose h2

h2 < −
1

b2
(b3h3 + bphp)

So that the second inequality is satisfied.

4. Then, we choose h1 such that

h1 < −
1

a1
(a2h2 + a3h3 + aphp)

So that the first inequality is satisfied.

If dp < 0, we can then choose hp such that

hp > −
1

dp
(d1h1 + d2h2 + d3h3)

In this case, if we can take hp big enough and the fourth inequality is satisfied.
If dp > 0, on the other hand, it follows from the fourth inequality that we need hp

such that

hp < −
1

dp
(d1h1 + d2h2 + d3h3)

In this case, to guarantee that we could choose an hp which satisfies that condition,
we would need to check that − 1

dp
(d1h1 + d2h2 + d3h3) is not lower than hp due to the

conditions imposed to choose h1 and h2. In particular, when dp > 0 and d2 < 0, h1, h2, h3
can only be chosen negative and the condition on hp does not seem to always be possible.

We can, then, study different cases of active constraints, i.e. when we have also active
lower bounds. In these cases the signs of the gradient vectors change and that could affect
the existence of the solution. In particular, a relevant parameter to check is whether a1
and d1 have same or different sign.

If a1 and d1 have the same sign a solution for the system of inequality exist: if both
a1 and d1 are positive, we can take h1 negative enough to satisfy both the inequalities,
while if the parameters are both negative, we simply take h1 positive enough.

When a1d1 < 0, on the other hand, a situation similar as the one of all active upper
bounds analyzed before, may occur.

In table 2.1.1, we reported all the possible cases depending on the signs of RY∼U |D,Z,X ,
RZ∼U |Y,D,X and RY∼Z|D,X,U . We note from the table that there are several cases where
a1d1 > 0 and thus MFCQ still holds even if all four R-value constraints are active.
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RY∼U |D,Z,X a1 RZ∼U |Y,D,X RY∼Z|D,X,U d1 a1d1
+ > 0 + + < 0 −
− < 0 + + < 0 +
+ > 0 − + > 0 +
+ > 0 + − > 0 +
+ > 0 − − < 0 −
− < 0 + − > 0 −
− < 0 − + > 0 −
− < 0 − − < 0 +

2.1.2 Three active constraints combinations

We may want to study combinations of three active constraints. We already saw that we
can prove LICQ if constraints on RY∼U |D,Z,X , RD∼U |X,U and RZ∼U |X are active and in the
case of active constraints RY∼Z|D,X,U , RD∼U |X,U and RZ∼U |X .

We would like to dive a bit deeper in other constraint combinations, in particular if
we take active upper bound constraints for RY∼U |D,Z,X , RZ∼U |X and RY∼Z|D,X,U . In this
case, we have the following vectors:

a1 > 0
a2
a3
. . .

ap < 0




0
0

c3 > 0
. . .

cp < 0



d1 < 0
d2

d3 < 0
. . .
dp


Other constraint choices with the same R-values, i.e. if lower bound constraints are

active, lead to similar situations.
We can try to study MFCQ in this case. The argument is similar to the one used in the

section before to study MFCQ for the four R-value active constraints. The problem boils
down also in this case to prove if a solution for a system of inequalities exists, namely:

a1h1 + a2h2 + a3h3 < 0
c3h3 < 0

d1h1 + d2h2 + d3h3 < 0

Analyzing this system, it follows naturally from the coefficients’ signs that we need to
choose h3 negative in order to satisfy the second inequality.

To have the third equation satisfied, we can then choose h1 such that

h1 > −
1

d1
(d2h2 + d3h3)

Exploiting the fact that a1 > 0, it follows that we need to choose h2 such that

−a1
d1

(d2h2 + d3h3) < a1h1 < −
1

d1
(d2h2 + d3h3)

which it means that

−a1
d1

(d2h2 + d3h3) < −
1

d1
(d2h2 + d3h3)

It leads to the following cases:
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• if a1
d1
d2 − a2 > 0, then

h2 >
a3 − a1

d1
d3

a1
d1
d2 − a2

h3

• if a1
d1
d2 − a2 > 0, then

h2 <
a3 − a1

d1
d3

a1
d1
d2 − a2

h3

• if a1
d1
d2 − a2 = 0, then we need

a3 −
a1
d1
d3 = 0

The first two cases can guarantee us MFCQ, since we can choose h2 arbitrarily, de-
pending on h3 which can be taken arbitrarily negative.

Other constraint choices with the same R-values, i.e. if lower bound constraints are
active, require analogous analysis and lead to similar results.

2.2 R2-value constraint

2.2.1 Comparison constraints

In this section we will study constraints the constraints that involve R2-values. We first
of all list all the inequalities we consider of this form:

i R2
D∼U |X̃,ẊI ,Z

≤ bUDR
2
D∼ẊJ |X̃,ẊI ,Z

,

ii R2
Y∼U |X̃,ẊI ,Z

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z

,

iii R2
Y∼U |X̃,ẊI ,Z,D

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z,D

,

iv R2
Z∼U |X̃,Ẋ−j

≤ bUZR
2
Z∼Ẋj |X̃,Ẋ−j

,

v R2
Y∼Z|X,U,D ≤ bZYR

2
Y∼Ẋj |X̃,Ẋ−j ,Z,U,D

.

We note that in the cases (i) − (iv) the right-hand side depends only on observed
variables V = (Y,D,X,Z); in particular, it’s constant with respect to ψ. It means
that computing the gradient of the constraint with respect to ψ boils down to compute
the gradient of the left hand side. Moreover, since on the left hand side we have a
R2-value of the form R2

S∼T |Q with S and T random scalars, we can use the fact that

R2
S∼T |Q = (RS∼T |Q)

2. This relation allows us to compute the gradient of the R2-value
easily as derivative of a squared function.

To sum up, the gradients of the constraints (i)− (iv) are the following:

i 2RD∼U |X̃,ẊI ,Z
∇ψg

{2,3,p}∪Ĩ∪I
2p

ii 2RY∼U |X̃,ẊI ,Z
∇ψg

{1,3,p}∪Ĩ∪I
1p

iii 2RY∼U |X̃,ẊI ,Z,D
∇ψg

{1,2,3,p}∪Ĩ∪I
1p
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iv 2RZ∼U |X̃,Ẋ−j
∇ψg

{3,p}∪Ĩ∪İ\{j}
3p

where Ĩ contains all the indexes corresponding to the Xs in X̃, and İ the ones in Ẋ.
Note that for I we considered the indexes in ẊI

We can follow the observations from the previous sections to compute the form of the
gradient vectors.

∇ψg
{2,3,p}∪Ĩ∪I
2p =


0
+
∗ ∈ R
∗p−4

−


where ∗p−4 has entries equal to 0 in the positions corresponding to indexes in İ \ I.
Analogously, for the other gradients:

∇ψg
{1,3,p}∪Ĩ∪I
1p =


+
0
∗ ∈ R
∗p−4

−

 ∇ψg
{1,2,3,p}∪Ĩ∪I
1p =


+
∗ ∈ R
∗ ∈ R
∗p−4

−

 ∇ψg
{3,...,p}\{j}
3p =


0
0
+
∗p−4

−


(2.4)

Note that in the last case the values in ∗p−4 are 0 for the index j and a real value

otherwise; in the first two cases, its the same as∇ψg
{2,3,p}∪Ĩ∪I
2p , so we have 0 in the positions

corresponding to indexes in İ \ I.
Note that we then need to multiply the gradients in ?? for the corresponding R-values

in order to obtain the signs of the gradient of the R2-values. In Table 2.1 we summarized
the form of the gradient vectors for each constraint.

We can already make some general considerations on the CQ for this first three
constraints. In particular, we note that if we have active constraints on R2

D∼U |X̃,ẊI ,Z
,

R2
Y∼U |X̃,ẊI ,Z

(or R2
Y∼U |X̃,ẊI ,Z,D

) and R2
Z∼U |X̃,Ẋ−j

, we have linear independence, and thus

LICQ. The argument is the same as the one used to prove LICQ for R-value constraints.
We now try to study the constraint (v):

R2
Y∼Z|X,U,D ≤ bZYR

2
Y∼Ẋj |X̃,Ẋ−j ,Z,U,D

Differently from before, we have that both the right and the left hand side depend on
U , so we must take both in account to compute the derivative with respect to ψ.

First of all, we rewrite the constraint as follow:

R2
Y∼Z|X,U,D

R2
Y∼Ẋj |X̃,Ẋ−j ,Z,U,D

− bZY ≤ 0

And, using the covariance matrix:

(Ω
{1,...,p}
13 )2Ω

{1,...,p}
33

(Ω
{1,...,p}
1j )2Ω

{1,...,p}
jj

− bZY ≤ 0

Note that, to lighten the notation, we assumed Ẋj = Xj.
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We denote

g
{1,...,p}
1,3j :=

(Ω
{1,...,p}
13 )2Ω

{1,...,p}
33

(Ω
{1,...,p}
1j )2Ω

{1,...,p}
jj

− bZY

The derivatives are computed as follow:

∂gI1,3j
∂ψd

=− 1{d ∈ I}
(ΩI

1j)
4(ΩI

33)
2
ΩI

13Ω
I
1j·

· [2ΩI
1jΩ

I
33Ω

I
jjΩ

I
1pΩ

I
d3 + 2ΩI

1jΩ
I
33Ω

I
jjΩ

I
1dΩ

I
p3+

+ ΩI
1jΩ

I
33Ω

I
13Ω

I
jpΩ

I
dj + ΩI

1jΩ
I
33Ω

I
13Ω

I
jdΩ

I
pj+

− 2ΩI
13Ω

I
jjΩ

I
33Ω

I
1pΩ

I
dj − 2ΩI

13Ω
I
jjΩ

I
33Ω

I
1dΩ

I
pj+

− ΩI
13Ω

I
jjΩ

I
1jΩ

I
3pΩ

I
d3 − ΩI

13Ω
I
jjΩ

I
1jΩ

I
3dΩ

I
p3]

where I = {1, . . . , p}.
We can simplify this expression, for d = 1:

∂gI1,3j
∂ψ1

=− 2

(ΩI
1j)

4(ΩI
33)

2
ΩI

13Ω
I
ij·

· [ΩI
jjΩ

I
1jΩ

I
3p(Ω

I
11Ω

I
33 − (ΩI

13)
2)+

− ΩI
pjΩ

I
13Ω

I
33(Ω

I
11Ω

I
jj − (ΩI

1j)
2)]

However, as we can see, we can’t really infer anything about the sign of the partial
derivative. This leads to a more complex analysis. In particular, we can’t say much about
linear independence. We may still try to say something under the assumption that at least
one entry in the corresponding gradient vector is non-zero, or assuming specific signs for
some entries of the gradient vector and using a similar argument to the one used to study
MFCQ for RY∼Z|X,Z,D constraint in Section 2.1.1.

2.2.2 Equality constraint on R2

In order to introduce R2-value constraints, we may also need to add the equality constraint
R2
U∼Ẋ|X̃ = 0, that we discussed in section 1.1.4, while introducing the constraints in the

optimization problem. Since it is an equality constraint, it is always active and thus must
always be taken in account for the study of constraint qualifications.

Firstly, we study the simplified case where Ẋ is equal to a singleXj, thus the constraint

g
Ĩ∪{j,p}
jp becomes

R2
U∼Xj |X̃

= 0

In this case, the argument is similar to the constraints studied in the previous section,
so the gradient corresponds to

2RU∼Xj |X̃∇ψg
Ĩ∪{j,p}
jp

And we have, analogously as before,
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∇ψg
Ĩ∪{j,p}
jp =


0
0
0
∗p−4

−


where ∗p−4 are 0 for the indexes not in Ĩ, a positive value in position j and real values

otherwise.
We note that, even adding this equality constraint, LICQ still holds if we have con-

straints on R2
D∼U |X̃,ẊI ,Z

, R2
Y∼U |X̃,ẊI ,Z

(or R2
Y∼U |X̃,ẊI ,Z,D

) and R2
Z∼U |X̃,Ẋ−j

(the (i) − (iv)

stated above).
The general case where Ẋ is a vector is more complex, because we can’t use the relation

R2 = (R)2.
We try to study directly the gradient with respect to ψ of R2

U∼Ẋ|X̃ using the definition

of R2:

R2
U∼Ẋ|X̃ =

Cov(U, Ẋ|X̃)tV ar(Ẋ|X̃)−1Cov(U, Ẋ|X̃)

V ar(U |X̃)

In terms of covariance matrix, it is

R2
U∼Ẋ|X̃ =

(ψİ − Σİ ĨΣ
−1

Ĩ Ĩ
ψĨ)

t(Σİ İ − Σİ ĨΣ
−1

Ĩ Ĩ
ΣĨ İ)

−1(ψİ − Σİ ĨΣ
−1

Ĩ Ĩ
ψĨ)

ψp − ψtĨΣĨ ĨψĨ

To lighten the notation, we define

r := ψİ − Σİ İΣ
−1

Ĩ Ĩ
ψĨ A := Σİ İ − Σİ ĨΣ

−1

Ĩ Ĩ
ΣĨ İ

We note that, since Σ is positive defined, also A is positive defined
We compute the following quantities,

∂

∂ψk
R2
U∼Ẋ|X̃ =0 for k ∈ {1, 2, 3}

∇ψİ
R2
U∼Ẋ|X̃ =

2A−1r

(ψp − ψtĨΣ
−1

Ĩ Ĩ
ψĨ)

2

∇ψĨ
R2
U∼Ẋ|X̃ =− 2

Σİ ĨΣ
−1

Ĩ Ĩ
A−1r(ψp − ψtĨΣ

−1

Ĩ Ĩ
ψĨ) + Σ−1

Ĩ Ĩ
ψĨr

tA−1r

(ψp − ψtĨΣ
−1

Ĩ Ĩ
ψĨ)

2

∂

∂ψp
R2
U∼Ẋ|X̃ =− rtA−1r

(ψp − ψtĨΣĨ ĨψĨ)
2

Since A is positive defined, we have that ∂/∂ψp(R
2
U∼Ẋ|X̃) < 0.

We note that if we have constraints on the first three variables, even adding the equality
constraint on R2

U∼Ẋ|X̃ = 0 with |Ẋ| > 1, LICQ still holds. In particular, LICQ holds if

we have a combination of

• One active constraint amongRY∼U |D,Z,X , RY∼Z|D,X,U , R
2
Y∼U |X̃,ẊI ,Z

, orR2
Y∼U |X̃,ẊI ,Z,D

;

• One active constraint among RD∼U |Z,X or R2
D∼U |X̃,ẊI ,Z

;
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• One active constraint among RZ∼U |X or R2
Z∼U |X̃,Ẋ−j

.

• The equality constraint R2
U∼Ẋ|X̃ = 0.

2.3 Constraint combinations

In this last section we would like to summarize more precisely for which constraint com-
binations constraint qualifications still hold and look at some last problems.

We summarize all the constraints we could have for our problem and their gradient
form in Table 2.1. In the table we used the notation that ∗ and . . . correspond to element
in R that can be positive, negative or equal to zero.

Constraint Gradient

RY∼U |X,Z,D ≥ BUY
l

(
− ∗ ∗ . . . −

)t
RY∼U |X,Z,D ≤ BUY

u

(
+ ∗ ∗ . . . −

)t
R2
Y∼U |X̃,ẊI ,Z

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z

RY∼U |X̃,ẊI ,Z
·
(
+ 0 ∗ . . . −

)t
with 0 for the indexes of X which are not in ẊI

R2
Y∼U |X̃,ẊI ,Z,D

≤ bUYR
2
Y∼ẊJ |X̃,ẊI ,Z,D

RY∼U |X̃,ẊI ,Z,D
·
(
+ ∗ ∗ . . . −

)t
with 0 for the indexes of X which are not in ẊI

RD∼U |X,Z ≥ BUD
l

(
0 − ∗ . . . −

)t
RD∼U |X,Z ≤ BUD

u

(
0 + ∗ . . . −

)t
R2
D∼U |X̃,ẊI ,Z

≤ bUDR
2
D∼ẊJ |X̃,ẊI ,Z

RD∼U |X̃,ẊI ,Z
·
(
0 + ∗ . . . −

)t
with 0 for the indexes of X which are not in ẊI

RZ∼U |X ≥ BUZ
l

(
0 0 − . . . −

)t
RZ∼U |X ≤ BUZ

u

(
0 0 + . . . −

)t
R2
Z∼U |X̃,Ẋ−j

≤ bUZR
2
Z∼Ẋj |X̃,Ẋ−j

RZ∼U |X̃,Ẋ−j
·
(
0 0 + . . . −

)t
with 0 in position j

RY∼Z|X,U,D ≥ BZY
l

(
sign(RZ∼U |X,D,Y ) ∗ sign(RY∼U |X,Z,D) . . . ∗

)t
RY∼Z|X,U,D ≤ BZY

u

(
−sign(RZ∼U |X,D,Y ) ∗ −sign(RY∼U |X,Z,D) . . . ∗

)t
R2
Y∼Z|X,U,D ≤ bZYR

2
Y∼Ẋj |X̃,Ẋ−j ,Z,U,D

(
∗ ∗ ∗ . . . ∗

)t
R2
U∼Ẋ|X̃ = 0

(
0 0 0 . . . −

)t
Table 2.1: Summary of constraints and associated gradients

We notice that in general we can say something about the signs of the first three and
the last vector entries, but we can’t say much about the signs of the elements corresponding
to the variables in X, i.e. the indexes (4, . . . , p − 1). It follows that it seems promising
to study constraint qualifications only when we have no more than 4 active constraints;
in particular, we have several combinations with three active constraints involving the
first three variables Y,D,Z with U and the equality constraint on R2

U∼Ẋ|X̃ , for which

we can prove LICQ directly looking at the signs of vector entries. In particular, every
combination of active constraints with:

• One active constraint among the ones involvingRY∼U |D,Z,X , RY∼Z|D,X,U , R
2
Y∼U |X̃,ẊI ,Z

,

or R2
Y∼U |X̃,ẊI ,Z,D

;
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• One active constraint among the ones involving RD∼U |Z,X or R2
D∼U |X̃,ẊI ,Z

;

• One active constraint among the one involving RZ∼U |X or R2
Z∼U |X̃,Ẋ−j

;

• The constraint R2
U∼Ẋ|X̃ .

If we want to add further active constraints we may look for MFCQ rather than LICQ.
We studied MFCQ in Section 2.1.1 and we have that MFCQ holds in the combinations
with:

• One active constraint amongRY∼U |D,Z,X , RY∼Z|D,X,U , R
2
Y∼U |X̃,ẊI ,Z

, orR2
Y∼U |X̃,ẊI ,Z,D

;

• One active constraint among RD∼U |Z,X or R2
D∼U |X̃,ẊI ,Z

;

• One active constraint among RZ∼U |X or R2
Z∼U |X̃,Ẋ−j

;

• The constraint RY∼Z|X,U,D.

where at least one of the active constraints is on R2-values.
We saw that in case that all four constraints are R-values, we have MFCQ under

specific conditions. Moreover, MFCQ holds if three out of the four constraints are active.
In the MFCQ case, however, it would be necessary to study the compatibility of

R2
U∼Ẋ|X̃ with the R2-value constraints. If we denote as

0
0
0
...
αp


the gradient vector of the equality constraint on R2

U∼Ẋ|X̃ . To still have MFCQ we

need that αphp = 0, so hp = 0. However, taking hp = 0 could lead to problems to have
the system of inequalities satisfied for the other constraints and needs to be studied more
in detail.

2.3.1 Positive definiteness constraint

In all the previous sections, we assumed that the covariance matrix Σ is positive defined
and extensively used this hypothesis to prove the signs of gradient vectors through Cauchy-
Schwarz inequalities.

However, it would be necessary to include the positive definiteness of the covariance
matrix as a constraint of the optimization problem and thus include it in our analysis of
constraint qualifications.

The block matrix

M =

(
A B
BT C

)
is positive definite iff A ≻ 0 and M \ A = C − BTA−1B ≻ 0. Applying this to our
covariance matrix Σ(ψ), we find that the requirement for positive definiteness translates
to one additional constraint

h(ψ) = ψp − ψTJ (ΣJJ)
−1ψJ > 0,
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where J = {1, . . . , p − 1}. This follows because we already know that ΣJJ is positive
definite and does not depend on ψ. The gradient of the additional inequality constraint
h is given by

∇ψh(ψ) =

(
−2(ΣJJ)

−1ψJ
1

)
.

Hence, the signs of the different components depend on both θ and ψ and thus we cannot
deduce much for our problem.



Conclusion

This report has examined the consistency properties of the optimal values of stochastic
optimization problems in the context of optimization-based sensitivity analysis for unmea-
sured confounding. Building on the framework developed by Freidling and Zhao in [2],
we investigated the theoretical foundations of this approach, which aims to quantify the
sensitivity of causal effect estimates by bounding the effects using stochastic optimization.

Our work focused on identifying conditions under which the optimal values of these
problems are consistent with the data-derived estimators. We reviewed existing theoretical
results, developed a methodology to assess consistency, and provided sufficient conditions
to guarantee it under specific scenarios. Central to our analysis was the role of constraint
qualifications, such as the Mangasarian-Fromovitz conditions, which ensure the feasibility
and well-posedness of the optimization problems. The conditions we derived are detailed
and theoretically robust, offering a foundation for future studies. However, the study
also highlighted a key limitation: the conditions we found must be evaluated at the
optimal solution of the stochastic optimization problem, which is generally unknown.
This dependency reduces the practicality of the results and underscores the need for
further refinements to the framework.

Future research directions could aim to address this limitation by exploring methods to
ensure that the required constraint qualifications hold almost surely under the Lebesgue
measure, thereby excluding critical edge cases where consistency might fail.

This study opens avenues for a more general exploration of consistency in stochastic
optimization, trying to better understand conditions for the Hadamard differentiability
of the optimal value function. Potential research could include developing examples and
counterexamples that illustrate interesting behavior of the optimal value function under
varying conditions, examining the effects of near-violations of constraint qualifications,
and refining the theoretical conditions under which sensitivity analysis remains robust.
Moreover, a stochastic simulation study could be conducted to evaluate the empirical
properties of the optimal value’s convergence, offering practical insights to complement
the theoretical findings.

In summary, this work provides a first step toward a broader theory of consistency
in stochastic optimization problems, with a particular focus on their application to sen-
sitivity analysis. While significant progress has been made, addressing the highlighted
limitations and pursuing the outlined research directions can lead to a deeper under-
standing of the interplay between statistical estimation and optimization. This would
ultimately contribute to the development of more robust and widely applicable sensitivity
analysis methodologies.

35
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