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Black-box Algorithms

@ We consider black-box algorithms, which can use only evaluations

of the objective function and not on its analytical form.

ra,

Evaluation query:
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Parameter Dependence

@ Performance of black-box algorithms heavily depend on the choice of
parameters;
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Parameter Dependence

@ Performance of black-box algorithms heavily depend on the choice of
parameters;

@ Parameter can be static or dynamic;

Key insights

o Adapting parameters dynamically can significantly improve
performance across varying problem landscapes;

@ Benchmark are crucial for training of learning methods for parameter
control.
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Randomized Local Search (RLS

RLS Algorithm

1
2
3
4:
5:
6
7
8
9

10:

: Input: Fitness function f, bit-string length n
. Initialize: Generate a random solution x € {0,1}"
. while termination criteria are not met do
Choose the radius k
Create y < x by flipping k randomly chosen bits in x
if f(y) > f(x) then
X<y
end if
: end while

Output: Best solution x found
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Problem Definition

Definition
For any bit string x € {0,1}" we have

LEADINGONES(x) = LO(x) = > [
i=1 j=1

Optimization Problem

find x* € argmax LO(x)
x€{0,1}n

LEADINGONES(11011001) = LO(11011001) =2
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Problem Definition

Definition
For any bit string x € {0,1}" we have

LEADINGONES(x) = Z H X;.
i=1 j=1
Optimization Problem

find x* € argmax LO(x)
xe{0,1}7

.

Definition

ONEMAX(x) = OM(x) = Zx,-.
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Algorithm Configuration Policy

Definition

We call policy a function

m:S = [l.n],s— k,

where s describes the state of the algorithm at a certain iteration.
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Definition
We call policy a function

m:S —[l.n],s — k,

where s describes the state of the algorithm at a certain iteration.

Problem

Find a 7* € argminE [¢(7; )],

where ¢ is a (random) cost metric assessing the cost of using policy 7 on
problem f.
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Algorithm Configuration Policy

Definition
We call policy a function

m:S = [l.n],s— k,

where s describes the state of the algorithm at a certain iteration.

Problem

Find a 7* € argminE [¢(7; )],

where ¢ is a (random) cost metric assessing the cost of using policy 7 on
problem f.

Cost is the runtime: the number of evaluation of the objective before
evaluating the optimum (we assume it is reachable in our case).
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Static Radius Policy for LEADINGONES

Static Policy [Rudolph 1997]
The static policy for the RLS radius is

7(/):=1, V LEADINGONES fitness /

This results in an expected runtime of 0.5n.
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Dynamic Radius Policy for LEADINGONES

Doerr (2019) defined the first dynamic parameter policy for RLS radius on
LEADINGONES.

States are defined as values of LEADINGONES fitness:

7:SM = 0..n] = [1..n]
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Dynamic Radius Policy for LEADINGONES

Doerr (2019) defined the first dynamic parameter policy for RLS radius on
LEADINGONES.

States are defined as values of LEADINGONES fitness:

7:SM = 0..n] = [1..n]

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness / is

. _k(n—1-1)...(n—1—k+1)
e e VN C )
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Dynamic Radius Policy for LEADINGONES

Doerr (2019) defined the first dynamic parameter policy for RLS radius on
LEADINGONES.

States are defined as values of LEADINGONES fitness:

7:SM = 0..n] = [1..n]

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness / is

. _k(n—1-1)...(n—1—k+1)
atk b ) = e —1) (= k1)

q(k;1,n) < q(k+1;/,n)ifand only if | < (n—k)/(k+ 1)
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Dynamic Radius Policy for LEADINGONES

Dynamic Policy [Doerr 2019]

The optimal dynamic policy for the RLS radius defined on S is

mopt(/) := leJ

This results in an expected runtime of 0.39n%, which corresponds to a 22%
improvement of the choice of fixed parameters.

v,
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DAC on LEADINGONES

In Biedenkapp et al. 2022, the use of a DDQN agent to learn the optimal

radius policy for RLS on LEADINGONES with the optimal dynamic policy
as ground truth.
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DAC on LEADINGONES

In Biedenkapp et al. 2022, the use of a DDQN agent to learn the optimal

radius policy for RLS on LEADINGONES with the optimal dynamic policy
as ground truth.
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DAC on LEADINGONES

In Biedenkapp et al. 2022, the use of a DDQN agent to learn the optimal
radius policy for RLS on LEADINGONES with the optimal dynamic policy
as ground truth.
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DAC on LEADINGONES

In Biedenkapp et al. 2022, the use of a DDQN agent to learn the optimal
radius policy for RLS on LEADINGONES with the optimal dynamic policy
as ground truth.

power_of 2 with n=50 and k=5
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Problem
Generalization difficulties for growing n.
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Our Setting

Our goal

Extend the radius policies for RLS using more information.
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Our Setting

Our goal

Extend the radius policies for RLS using more information.

State spaces

o SM =10..n], values of LEADINGONES fitness;

o 8@ :={(I,m): I €[0..n], m € [I..n]}, tuples of (LEADINGONES,
ONEMAX) fitness;

o S :={0,1}", all possible bit-strings.
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Policies on S®): Lexicographic Selection

Lexicographic selection
Candidate y is accepted from x iff
e LO(y) > LO(x);
e LO(y) = LO(x) and OM(y) > OM(x).
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Policies on S®): Lexicographic Selection

Key Steps in Computing the Optimal Policy

@ The expected runtime of each state depends only on

@ expected runtime of lexicographically larger states,
© transition probabilities defined by radius k.

@ We can compute optimal expected runtime for all states going in
descending lexicographic order.

@ For each state we can find optimal k in brute force manner.
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Policies on S(@): Standard Selection

Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).
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Policies on S(@): Standard Selection

Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

In this setting, loops between states with the same LEADINGONES value
but different ONEMAX values are possible. For example, the algorithm
can transition from (1, 3) to (1,2) and then back to (1, 3).

For each LEADINGONES fitness level /, we obtain a non-singular system
of n— | — 1 equations in n — [ — 1 unknowns.
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Policies on S(@): Standard Selection

For each LEADINGONES fitness level /, we obtain a non-singular system
of n— | — 1 equations in n — /[ — 1 unknowns.

To simplify computations, we used the following approximation:

@ In the computation of the expected runtime of states with
LEADINGONES fitness of /, the same k is applied across all states
(1, m) with fixed /.

@ Then, for each state, we select the optimal radius in brute force
manner as before.
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Policies on S®): Strict Standard Selection

Strict Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).
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Policies on S®): Strict Standard Selection

Strict Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

There is no possibility of loops between states with the same LO value
but different OM values. J

This reduces the complexity of the system and places us in a situation
analogous to the one in the lexicographic selection setting. J
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Policy on S("): Lexicographic Selection

Policy on S(

We extended the policy with lexicographic selection on the space
S — {0,1}", where each state corresponds to a complete bit-string x.

The steps to compute the optimal policy are the same as the policy on
S for lexicographic selection.
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Policy on S("): Lexicographic Selection

Policy on S(

We extended the policy with lexicographic selection on the space
S — {0,1}", where each state corresponds to a complete bit-string x.

The steps to compute the optimal policy are the same as the policy on
S for lexicographic selection.

We then evaluated the policies and settings by computing the expected
runtime (in function evaluations) from a starting bit-string chosen
uniformly at random.

19/31



Computational Results
©00000000

Exact Lexicographic Selection

Values of k- n = 15 Values of k- n = 16
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Figure: Heatmaps of optimal policies for lexicographic selection
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Exact Results for Lexicographic Selection

Expected Runtime (in function evaluations)
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Exact Standard Selection Policies

Figure: Heatmaps of approximated optimal policies for standard selection
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Exact Standard Selection

Expected Runtime (in Function Evaluations) for Standard Selection
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Exact Strict Standard Selection

Values of k- n = 15 Values of k- n = 16
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Figure: Heatmaps of policies for strict standard selection
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Exact Strict Standard Selection

Expected Time for Strict Standard Selection with Improvement
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Heuristic Policy
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Figure: Heatmaps of heuristic policies
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Approximated Lexicographic Selection Results

Simulation Results for Lexicographic Selection
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Approximated Standard Selection Results

Simulation Results for Standard Selection
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Results

@ We developed new policies for radius control of RLS on
LEADINGONES problem in a lexicographic selection setting and in the
standard setting;
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Conclusion
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Results

@ We developed new policies for radius control of RLS on
LEADINGONES problem in a lexicographic selection setting and in the
standard setting;

@ The result of the combination of auxiliary information of both in
policy and selection show an improvement in performance;

@ Including more information than ONEMAX fitness seems not to lead
a further notable improvements;

@ In the standard setting improvements in higher dimension are not
clear.
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Future Directions

@ Study more rigorously the standard setting, trying to validate the
results in high dimension.
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Future Directions

Future Directions

@ Study more rigorously the standard setting, trying to validate the
results in high dimension.

@ Use the tested settings and policies to train an RL agent in the
proposed settings, using our policies as new baseline.

o Extend the idea of including more information in policy definition for
other algorithms of practical use.

Thank you for your attention!
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Runtime Heatmaps: Lexicographic Selection
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Runtime Heatmaps: Standard Selection
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Runtime Heatmaps: Strict Standard Selection
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Standard Setting

Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

[e]e]e] le]elele)

We obtain a linear system in matrix form Ax = b as follows.

X =

E[TS(1,1)]
E[Tg,ffgl)(/ I +1)]

BT (1,0 — 1)

opt

(1 —P,((1,1) | (1,1)))
PRI((1,1) | (1,1 + 1))

PU((1,1) | (,n—1))

1+Z,\ 11
1+>202 /+1Z

1+307) 141 D

PRe)((1, 1+ 1) [ (1,1))
(1— ]p(krﬂ)((l, I+1)]

Pl (1,1 + :1) | (I,n—1))

(L1+1)) -

PO 1)1 1)E[ Tope(A, )]
AP I T+ 1)E[Tope (A, )]

LB(O 21 (1 1 — D)E[Tope 0]

]P’(k"fl)((l’ n— 1) | (l7 /))
]P(kn*l)((lly n— 1) | (/, |+ 1))

: (1 —Pl)((1, n:* D (n=1)))]
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Standard Setting

We obtain linear system in matrix form Ax = b as follows.

E[Té,f?(/ ) L+ 3 I e (A 1)[(1 1) E[ Tope (A, 1))
o | BT DI | SR S PO I DB Tepe O )]
]E[To:;g 1)(/7 n— 1)] 1+ ZA I+1 /L )\ (()‘ ,LL)|(I7 n— 1))]E[T0Pt()‘7 M)]
(1 =PRI, | (1,1))) PR (1,14 1) | (1, 1)) Pra-1)((1,n—1) | (1,1))
_ PRI [ (1 1+1)) (1 —PRad((114+1) | (L1 +1)) - Pre-1)((1,n — 1) | (1,1 +1))
B | (ln—1)  BEO(ID) | (a=1) o (- (1) | (Ln— 1)

Approximation

o We take kj = kjy1 = -+ = kn—1 = k to compute E| opt(l, m)];

@ We then take kopt(/, m) = argmmke[n_,]E[Topt(l, m)].
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Limited Portfolio

e powers_of two: {2/ |2/ < n};
e initial _segment with 3 elements: [1..3];
e evenly_spread with 3 elements: {i-|n/3| +1|i € [0..2]}.

n s s@ powers_of_two initial segment evenly _spread
2 1.5 1.25 1.25 1.25 1.75
3 3.125 2.375 2.75 2.375 2.375
4 55 4.375 4.625 4.687 4.687
5 7.857 6.491 6.87 7.087 7.087
6 11.511 8.946 9.537 9.684 9.261
7 14.197 11.549 12.205 12.471 12.037
8 18.748 14.368 14.574 15.306 14.906
9 22.031 17.248 17.589 18.318 17.693
10 27.234 20.289 20.683 21.413 20.81
11 30.337 23.393 23.908 24.6 24.028
12 37.156 26.63 27.203 27.903 27.1
13 40.306 29.914 30.58 31.247 30.482
14 46.758 33.282 34.024 34.694 33.938
15 50.941 36.747 37.53 38.214 37.329
16 58.558 40.237 40.469 41.772 40.9
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Results for S(")
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