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Variational inference

Given a target distribution 7 o< exp(—V/), determine an
approximation:
7w € arg min KL(p||7),
5 0 L o] )

where P is an ambiguity set.
The Kullback-Leibler (KL) divergence is defined as:

S5 log (%( )) dr(x), if p<m,

KL(p||7) =
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Bayesian inference

Bayesian inference framework

We want to make inference (e.g., compute expectation,
covariance. ..) on a posterior distribution 7 on a space ©:

o P 0R(0)
w(0) = p(0] ) = BT

Defining the potential V(6) = — log(p(x | 6)) — log(p(#)), then
™ o exp(—V).
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Bayesian inference

Bayesian inference framework

We want to make inference (e.g., compute expectation,
covariance. ..) on a posterior distribution 7 on a space ©:

o P 0R(0)
w(0) = p(0] ) = BT

Defining the potential V(6) = — log(p(x | 6)) — log(p(#)), then
™ o exp(—V).
Two approaches:

e Monte Carlo Markov chains (MCMC);

e Variational inference (VI).
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MCMC

Idea: build a Markov chain (X;)¢>0 with 7 as stationary
distribution. Then take (X:);>f as samples from 7.
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MCMC

Idea: build a Markov chain (X;)¢>0 with 7 as stationary
distribution. Then take (X:);>f as samples from 7.

Langevin MC

(Xt)t>0 are solution of the Langevin SDE

dX; = —VV(X;)dt + V2dB; (1)

where (B:)t>0 is the standard Brownian motion.
— v

The marginal laws p; of the solution of (X¢)¢>0, are the solution of
the Fokker-Planck PDE

3t,ut = dIV(/J,tv IOg %)

and it converges to the stationary distribution 7
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MCMC

Idea: build a Markov chain (X;)¢>0 with 7 as stationary
distribution. Then take (X;);>f as samples from 7.

Langevin MC

(Xt)e>0 are solution of the Langevin SDE

dX; = —VV(X;)dt + V2dB; (2)

where (Bt)¢>0 is the standard brownian motion.

Advantages:
@ samples from real distribution;

@ non-asymptotic guarantees when 7 is strongly log-concave.
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MCMC

Idea: build a Markov chain (X;)¢>0 with 7 as stationary
distribution. Then take (X;);>f as samples from 7.

Langevin MC

(Xt)e>0 are solution of the Langevin SDE

dX; = —VV(X;)dt + V2dB; (2)

where (Bt)¢>0 is the standard brownian motion.

Advantages:

@ samples from real distribution;

@ non-asymptotic guarantees when 7 is strongly log-concave.
Disadvantages:

@ generally slow, in particular in high-dimensional settings.
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Variational inference

The VI setting consists in finding a tractable approximation @ of
solving

7 € argmin KL(p||7)
peEP

and then computing the quantity of interests on 7.
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and then computing the quantity of interests on 7.

Advantages:

@ fast computation of statistics of 7.
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Variational inference

The VI setting consists in finding a tractable approximation @ of
solving

7 € argmin KL(p||7)
peEP

and then computing the quantity of interests on 7.

Advantages:

@ fast computation of statistics of 7.
Disadvantages:

@ approximation of the target distribution;

@ theoretical guarantees?
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Variational inference

The VI setting consists in finding a tractable approximation 7 of 7
solving

7 € argmin KL(p||7)
peP

and then computing the quantities of interest on 7.

In the paper, the problem is addressed in the cases of
o P = BW(RY) := {non-degenerate d-dimensional Gaussians};

e P = {mixtures of d-dimensional Gaussians}.
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Particle system

Given (X;)¢>0 solutions of the Langevin diffusion, with X; ~ 7,
my = E[X¢] and £; = cov(X;), then

me = —Er[VV(X:)]
Y =2l —En[VV(X;) ® (Xe — my) + (Xe — my) ® VV(Xy)]
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Particle system

Given (X;)¢>0 solutions of the Langevin diffusion, with X; ~ 7,
my = E[X¢] and £; = cov(X;), then

m = —Ex, [VV(X¢)]
Y =21 —Er [VV(X:) ® (Xe — me) + (Xe — my) @ VV(X2)]

Sarkka's heuristic
Taking Y; ~ pr = N(m;, X), the system of ODE

m; = B, [VV(Y:)]
Y =2 —E,[VV(Y:) @ (Ye — me) + (Ve — mp) @ VV(Y3)]

yields to an evolution (p;):>0 of gaussians.

.
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Problem geometry

Optimization problem

7t € argmin KL(p||7)
pEP

where P = {py: 0 € ©}

The choice of P determines the geometry of the searching problem.
o In RY: x¢r = —VF(xt)
(" continuous-time" gradient descent)
o In P =BW(RY): O¢pur = —VawF (i)
(gradient flow)
Vew? Discretization?

10
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Results

Claim: The gradient flow of KL(:||7) in the space BW(RY)
endowed with the Wasserstein distance solves Sarkka's ODEs.
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Results

Claim: The gradient flow of KL(:||7) in the space BW(RY)
endowed with the Wasserstein distance solves Sarkka's ODEs.
Consequences:

@ (pt)r>0 converges (rapidly) to the Gaussian VI solution 7
when 7 is strongly log-concave;
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Results

Claim: The gradient flow of KL(:||7) in the space BW(RY)
endowed with the Wasserstein distance solves Sarkka's ODEs.
Consequences:

@ (pt)r>0 converges (rapidly) to the Gaussian VI solution 7
when 7 is strongly log-concave;

@ the discretized algorithm has non-asymptotic sharp guarantees
when 7 is strongly log-concave and log-smooth.
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Results

Claim: The gradient flow of KL(:||7) in the space BW(RY)
endowed with the Wasserstein distance solves Sarkka's ODEs.
Consequences:

@ (pt)r>0 converges (rapidly) to the Gaussian VI solution 7
when 7 is strongly log-concave;

@ the discretized algorithm has non-asymptotic sharp guarantees
when 7 is strongly log-concave and log-smooth.

An extension with P as space of mixtures of Gaussian is then
derived.

11
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Wasserstein space

Riemannian structure

We consider P(R?) with the following Riemannian structure
(Otto):

T, P2(RY) = {Vy | ¢ : RY = R}, 1 € Pa(RY)

70 = /R (V(6), W(O))god(0), v, w € T, Po(R)
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Gradient flows in BW(R

[ Jelelele}

Wasserstein space

Riemannian structure

We consider P(R?) with the following Riemannian structure
(Otto):

T, P2(RY) = {Vy | ¢ : RY = R}, 1 € Pa(RY)

70 = /R (V(6), W(O))god(0), v, w € T, Po(R)

P2(RY) is a metric space with the Wasserstein metric (Benamou -
Brenier):

1
W(ji0, j13) = inf { /0 | V€ IR, dt | Bepte = —diV(utVE)}

i = = = ==

12
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Bures-Wasserstein space

BW(RY) is identified with RY x S, where
S, ={XeR™|L~0,Xf =1}
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Bures-Wasserstein space

BW(RY) is identified with RY x S, where
S, ={XeR™|L~0,Xf =1}

Properties

@ It inherits the Riemannian (and metric) structure of P(RY);

@ known closed-form for the Wasserstein distance and the
optimal transport map.

13



Gradient flows in BW(R

[¢] lele]e}

Bures-Wasserstein space

BW(Rd) is identified with RY x S++, where
S, ={XeR™|L~0,Xf =1}

Properties

@ It inherits the Riemannian (and metric) structure of P(RY);

@ known closed-form for the Wasserstein distance and the
optimal transport map.

A

Riemannian structure

In particular, the tangent space is identified with

T,BW(RY) = {x > a+S(x—m,) |acR? S c S} =RY x §¢

where S¢ = {S € R¥*9 | St = S},

A

13
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).

o Bures-JKO scheme (proximal point algorithm):

Bures-JKO scheme

Given h > 0,

) 1
Px+1,n = argmin {KL(p || 7) + %sz(Pa Pk,h)}
pEBW(R)

14
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).

o Bures-JKO scheme (proximal point algorithm):

Bures-JKO scheme

Given h > 0,

) 1
Px+1,n = argmin {KL(p || 7) + %sz(Pa Pk,h)}
pEBW(R)

We then define p; := limp_0 p| ¢/,

14
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).
o Projection of the Wasserstein gradient on T BW(R);
@ Direct computation of Bures-Wasserstein gradient.
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).
o Projection of the Wasserstein gradient on T BW(R);
@ Direct computation of Bures-Wasserstein gradient.

Bures-Wasserstein gradient

Vewf(m, ) = (Vmf(m, ¥),2V5f(m, T))
Vew KL(p || 7) = (Ep[V V], E[V2V] - ;)
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Gradient flows in BW(IR9)

Goal: derive gradient flows (p;)r>0 of KL(- | 7) in BW(RY).
o Projection of the Wasserstein gradient on T BW(R);
@ Direct computation of Bures-Wasserstein gradient.

Bures-Wasserstein gradient

Vewf(m, ) = (Vmf(m, ¥),2V5f(m, T))
Vew KL(p || 7) = (Ep[V V], E[V2V] - ;)

Gradient flow

In the previous ways, we obtain VgwKL(x || 7) in . The gradient
flow (pt)r>0 in BW(RY) is a solution of

Otpr = —VBWKL(Pt ” 7T)

15
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Sarkka equivalence

(Pt = P(m;,5))e0. gradient flow of KL(y || ) in BW(RY),
satisfies Sarkka's system of ODEs

my = —E[VV(Y})]
Y. =21 —E[VV(Y)) @ (Ye — m) + (Y — m:) @ VV(Yy)]

16
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Continuous-time convergence

We say F, functional on BW(RR?), is a-convex for o € R if, on the
constant-speed geodesic (pt):efo,1],

t(1—1t)

5 W3 (po, p1)

F(pt) < (1= t)F(po) + tF(p1) —

17
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Continuous-time convergence

We say F, functional on BW(RR?), is a-convex for o € R if, on the
constant-speed geodesic (pt):efo,1],

t(1—1t)

5 W3 (po, p1)

F(pt) < (1= t)F(po) + tF(p1) —

For any a € R, V2V = al (r strongly log-concave), then KL(-||7)
is a-convex on BW/(RY).

17
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Continuous-time convergence

Let V2V = al for a certain o € R. Then, for any py € BW(RY),

there exists a unique solution for the gradient flow in BW(RY) of
KL(+||) started at pg. Moreover,

@ If o >0, then for all £ > 0,

W3 (pe, ) < exp(—2at) W3 (po, 7)

@ If @ > 0, then for all t > 0,

KL(p: || w) = KL(# || w) < exp(—2at) {KL(po || 7) — KL(# || 7)}

© If =0, then for all t > 0,

A 1 A
KL(pt || w) = KL(# || 7) < EW22(P0;7T)

18
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Discretization

To discretize in t the gradient flow (pt)¢>0, two approaches are
possible:

19
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Discretization

To discretize in t the gradient flow (pt)¢>0, two approaches are
possible:

@ Numerical integration of Sarkka's system of ODE

my = —E[V V4(Y})]
Y. =21 —E[VV(Y) @ (Ye — m) + (Y — me) @ VV(Yy)]

with Yt ~ Pt = (mt, )

Drawback: theoretical guarantees?

19
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Discretization

@ Bures-Wasserstein SGD algorithm.

Algorithm Bures—Wasserstein SGD

Require: o > 0, step size h > 0, mg and X
1: for k=1,...,N do
2: Draw a sample Xy ~ Pk

3 My41 < mg — hV V()%k)

4 My 1 —h(V2V(X) -

5: Zf{ — M M

6: Ypy1 clipl/oéZ;F

7. end for

It can be shown that
PE = Py xs = &Py (—hVew KL(px | m)(Xk)) (SG step of h).

20
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Non-asymptotic results

Assume that 0 < o/ < V2V < | (7 strongly log-concave and
log-smooth). Also, assume that h < a?/60 and that we initialize
Algorithm 1 at a matrix satisfying g/ < ¥, = f/ Then, for all
k € N,

. 36dh
E[W5 (pk, #)] < exp(—akh) W5 (po, ) + ——

In particular, we obtain

E[W; (px, )] < €2

. 2.2 . .
prowded we set h < = and the number of iterations to be

k2 a3€2 log (M>

21
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Summary (so far)

Results:

@ Theoretical guarantees that close the gap between Gaussian
VI and Langevin MC.
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Results:

@ Theoretical guarantees that close the gap between Gaussian
VI and Langevin MC.

Drawbacks:

@ Gaussians are not always a good approximation of the target
distribution 7.
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Summary (so far)

Results:

@ Theoretical guarantees that close the gap between Gaussian
VI and Langevin MC.

Drawbacks:

@ Gaussians are not always a good approximation of the target
distribution 7.

The drawback can be addressed by extending the previous model
to mixtures of Gaussians.

The set of the d-dimensional Gaussian mixtures is dense in P,(R9)
for the metric W5.

22
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Geometry of the problem

The space of mixtures of Gaussians can be identified with
P2(BW(RR?)) through this relation

pePa®) = [ (o)

where © = RY x S4 | =~ BW(RY).

23



Mixtures of Gaussians
0®0000000

Geometry of the problem

The space of mixtures of Gaussians can be identified with
P2(BW(RR?)) through this relation

pePa®) = [ (o)

where © = RY x S =~ BW(RY).

The theory of optimal transport can be derived again in the space
P2(M) where M is a Riemannian manifold, in particular it is
well-defined the gradient flow of y — KL(p, || 7) in P2(BW(R?)).

23



Mixtures of Gaussians
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Interacting particles algorithm

Let u € P(BW(R?)) = F(u) = KL(p, || 7) € RU {oc}.

The gradient flow (11¢)¢>0 of the functional F over P(BW(R?))
can be described as follows. Let 0y = (mg, Xo) ~ po, and let
0 = (m¢, X+) evolve according to the system of ODEs:

e = — E[V log 224(Y1))

S,——F [v2 log p’“ (Yt)} Y, — o,E [v2 log %(Yt)} :

where Y; ~ N (my, X¢). Then 0; ~ py.

24
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Interacting particles algorithm

To implement the Gaussian particles scheme we take N < co
Gaussian particles, i.e., mixtures of N Gaussians

N N N
1

1
Ho =y 200 = 17 2 0(mf0 510 ¢ Pro = g 2 P00y

25
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Interacting particles algorithm

To implement the Gaussian particles scheme we take N < co
Gaussian particles, i.e., mixtures of N Gaussians

N
1 1
fo = E 1 59((;') =N E 5 mi 5 ) " Puo = N Z Pmi £y
i= -

It follows
1< 1 1<
= — 0 = — O, () <)y & = — i) (i) -
e /v,z; o) N; (m ) 7 Pus Nz;p(mﬁ),ii))
1= 1= 1=
Or we can use a proximal point method analogous to the

Bures-JKO scheme:
O +n,..., 6N 1+ h) ~

LN
KL (N Z Pot)

i=1

/A argmin
00),...0Meo

1 2
W) T SNA Z W3 (Pt Pegi))

i=1

25
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Pros and cons

Advantages:

@ (Hope of) asymptotic convergence to an arbitrary good
approximation of the target distribution 7w given N sufficiently
large.

Drawbacks:

@ Lack of theoretical guarantees as in Gaussian VI and Langevin
MC because
= KL(py || m)

is in general not convex, even if 7 is strongly log-concave.

26
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Extensions with changing weights

In the paper a possible extension is suggested to take into account
mixtures of Gaussians with changing weights:

ZWt (m® 50y Ppc = ZWtP () 50))-

i=1

27
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Extensions with changing weights

In the paper a possible extension is suggested to take into account
mixtures of Gaussians with changing weights:

ZWt (m® 50y Ppc = ZWtP () 50))-

i=1

Idea: use the Wasserstein-Fisher-Rao (Hellinger-Kantorovich)
geometry, which admits change of mass. Each Gaussian particle is
provided with a mass which evolves with the other parameters.

27



Extensions with changing weights

Let Y() ~ N( Z( )) and let r =/ w;’. Then, the system
of ODEs is given by

i) = —E |Viog 2 (v{)],
s
20 = B [V?log 2 (v1)] £ — £0E [210g 2 (V)]
N

0 - (afon (4] - § e s (7)) .

v

28
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Summary

Results of the paper:

@ Gaussian VI framework which close the gap with Langevin MC
in terms of theoretical guarantees;

@ mixtures of Gaussians VI framework with good empirical
results.

Limits:
@ Lack of theoretical guarantees for the mixture of Gaussians
model;

@ no in-depth analysis of the mixture of Gaussians VI with
changing weights and the Wasserstein-Fisher-Rao geometry.

29
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Thank you for your attention!

30
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Proof of Sarkka’'s theorem

It is known (Ambrosio et al., 2008):
_ H
Vuw, KL(p || 7) =V Iog%

Let (m¢)e>0 evolve along the Fokker-Planck PDE.
According to Otto calculus, if xg ~ mp and

; ™
Xt = vi(x¢) = —Vlog ?t(xt)

then Xt ™~ Tt.
From explicit computation (integrating by parts) of

m; = atEm [Xt]

Y = OB, [xt @ xt] — 0¢(Exr, [xe] @ Ex, [xe])

follows Sarkka's system of ODEs.

31
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Bures-JKO scheme

Gaussian VI

pe+n = min  L(m X)) =KL(pnx || )+

pEBW(RRY)
—i—i | me —m |? +i32(z Y)
2n " 2n M0
Sarkka's system of ODEs can be derived by computing the critical
points from
VmL(mX)=0
Vz[,(m, Z) =0

and then computing the limit for h | 0.
The process is analogous to the proximal point algorithm for
mixture of Gaussians.

32
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Otto calculus

In P(R9), with Otto-Wasserstein riemannian structure, for every
nice and regular curve (p¢)¢>0, there exist a tangent field
(ve = V¢)e>0 such that

81‘,“1“ + diV(,LLtVt) =0

W2(ju0, 1) = mf{/ I x—y I dr(x.y)}
vEC(1,v) JRI xR

=/'Hx—TuHde
Rd
log, v =V¢,, —id

exp,, v = (id + v),

33
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Complements on Bures-Wasserstein space

If (p¢)e>o0 is a curve in BW(RY) with tangent vector in time 0 of
(a, S), then

mt =a

it =5Y0+20S

For any curve (m¢, X+)r>0 with tangent vector (a, S) at time t =0
is defined as Vgw f(mo, Xo) = (3, S) such that

<vBWf(m0’ ZO)? (av 5)>Pm0,):0 = 8t‘t:0 f(mt7 Zf)'

<§, a) + <§, Z()S> = <me(mo, Zo), a> + 2<sz(m0, Zo), Zos>

It follows:

Vewf(mX)=(Vnf(mX),2Vsf(m,X)).

34
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Proof of continuous-time convergence

F functional, (pt)e>0 and (q¢)e>o solutions of g.f. of F.

F(pe) > F(qt) + (V(F(qr)), |0gqt(Pt)>qt + %dz(ptv qz)
8td2(Pt7 qr) < —204d2(Pt7 qr)
Grownwall's inequality: d?(p;, g:) < exp(—2at)d?(po, qo)

Taking g: = p*, Vt>0,ifa>0

Conv.

0=F(p.) = F(p)+ (VF(p).logy(p:))p+ 5 d(p: )

Young 1 a «
> F(p) - ZHV}—(P)H% =5 |ogp(p*)\|§+§d2(p, p+)
—_————

=d?(p,p+)

35
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Proof of continuous-time convergence

pe gradient flow = 9, F(p¢) = — || VF(pe) |3,
Ot F(pt) < —2aF(pt) Gronval F(pt) < exp(—2at)F(po)

If =0,
. 1 2 *
Lyapunov functional: £; := tF(p;) + §d (pt, p*)

0Ly = F(pe) — t || VF(pe) |13, +{logp, (P*), VF(pe))p, < 0

2 *
< 4%(po, P")

Le <Ly = F(pr) < oy

36



Non-asymptotic
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Complements on Bures-SGD

We have g, := VewF(p) = (Ep[V V], Ep[V2V] — £71), and

therefore the stochastic gradient g, := (VV(X), V2V(X) — £ 1).

Clip operator:

d d
CIipT Y = Z)\I’uiu; — C||pTZ = Z()\’ A T)ul-ult
i=1 i=1

Lemma (Altschuler et al., 2023): For any m € RY,7 > 0, and
¥y, ¥ esq,,

Wa(pm.clipms s Pm.clipms’) < Wo(pm,x: Pmx)

37



Non-asymptotic
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Proof of non-asymptotic guarantees

Lemma: If0<al < V2V </and h<a?/60. Then, if in
Bures-SGD, ¥ = $/, then £} = §1.

Sketch of proof: The idea is to write Zi as a generalized
Bures-Wasserstein barycenter at X for a certain distribution P, i.e.

T = exps, ( / Iogzk(Z)dP(Z)>

Then, some inequality results from Altschuler et al., 2023 are
exploited.
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Non-asymptotic
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Proof of non-asymptotic guarantees

Fioi=0(Xo, X1, X2, ..., Xi_1)
We bound

E[WS (ps1, %) | Fi] < E[WZ (P, %) | Fil

By writing the Wasserstein distance as expectation under the
optimal coupling of Xi ~ px and Z ~ @ and then bounding it
through strong convexity of KL(- || 7), it holds

E[W2 (Pk+1,7) | Fi] < (1 —2ah) W2 (pk, ) + herr

39



Non-asymptotic
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Proof of non-asymptotic guarantees

Using the previous lemma, the definition od the stochastic gradient
and Poincaré inequality, it holds

36d
err < —— + 6W3(pk, 7)
e
. 2
Assuming h < g‘—,

36dh?

E[WZ (prs1, ) | Fi] < (1~ ah)W3 (pi, ) +

The theorem follows by iterating this result and by small step
approximation.
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Complements on mixtures of Gaussians

Given (M, g) Riemannian manifold,

Po(M) :={u € P(M) | /dz(po, )du < oo for some pg € M}

Wi Gu.v) =1 inf [ cy)d(x)

T,PaM) = Vo [0 € Ce (M)}~ )

(v, W)y = / g5(v(p), w(p))du(p)

Given a functional F, V, F(u) is the element of T,P>(M) such
that, for any curve (ut)¢>0 which satisfies the transport equation
Ot + div(peve) = 0 with po = p, it holds

8t“|t:o f(ﬂt) = <VW2‘F(/~L)7 V0>u = /g(Vsz(M)7 VO) du
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Complements on mixtures of Gaussians

It follows, using the transport equation and integrating by parts,
that
Vi, F(p) = VOF(u)

where 6F (1) : M — R is the first variation of F at p. It satisfies

Oleco Flpe) = [ 57 (1) Ol o s

To find the system of ODEs for the KL divergence functional when
M = BW(R), the first variation of the functional is computed
and its Bures-Wasserstein gradient. The ODEs for the evolution of
the gradient flow then follow the relation

mO = a
Yo =S50+ %S
for every curve (mg, ¥¢)t>0 in the BW(RY) space with tangent

vector (a, S) in 0. ,
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Lack of convexity

The functional 1 — KL(p, || ) is not convex even when 7 is
strongly log-concave.

Let d =1,V =0, then KL(p, || 7) = H(p,). Let

po = N(0,1) ® 61, 1 = N(0,72) ® §1. For the optimal coupling,
0(2) = a% =1 and m; = Tmg. The geodesic is thus

{ue = N(0, (1 — t + t7)?) @ 01} 4eqo,1)- Thus,

Pu. = //\/(m, o2)dpe(m,0?) = N(0,1+ (1 — t + t7)?)

Hence,

1 1
H(pu) = [ Puclogpy, =~ log(2ne) = 5 log(1+ (L — £+ £7)?)

Concave in [0,1] for 7 = 1/2.
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Complements on HK (WFR) geometry

Fisher-Rao (Hellinger) Wasserstein
e Space M (RY) of @ Space P>(R?) of
positive measures. probability measures.
e Fisher-Rao (Hellinger) @ Wasserstein distance.
distance:

@ Curves follow:
d7r(po, 1) = /(\/:‘TO—\/lTl)2 Oepue + div(peve) =0
@ Curves follow:

Drpe = e V]2 = / V]2 dp

1
ol = 5 [ a*du
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Complements on HK (WFR) geometry

Wasserstein-Fisher-Rao (Hellinger-Kantorovich) geometry
o Space M (RY)
o TM(RY) ={(a,v)|Fu:R!I =R, a=u,v=Vu}
@ Curves follow:
Oty + div(peve) = aupfie

@ Norm:
| (@ v) 2= / (04 || v [2)dp

@ Wasserstein-Fisher-Rao distance:

1
WER? (s, 1) = inf{/ | (e ve) |2, dt |
0

(e, e, v¢) solves reaction-diffusion PDE}
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Complements on HK (WFR) geometry

The idea to develop the particle system algorithm is to define
particles with mass (x:, r:) where the trajectory t — x; develops
along a diffusion process and the mass along a reaction process, i.e.

Xt :Vt(xt)

fr =(oe — /atd,ut)rt (normalized to evolve in Pa(M))

To derive the gradient flow, we take v; and a; as the WFR
gradient of the KL functional.
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Empirical results

Target: Bayesian logistic regression.
@ synthetic dataset: D = {(x;,y;):i=1,...,N};
e binary label y; € {0,1}, given by (z € RY)

w(yi | xi,2) = o(xf2)"(1 — o(x{z)) ™

@ target posterior with uninformative prior:

m(z | D)= Hwy,|x,,

@ Langevin dynamic associated to:
N
~VV(z) = Vlegn(z | D) = ) (vi — o(xfz))xi
i=1
o x; generated from two Gaussian distributions A'(mj,, ¥*) with
separation factor || mjy — m§ ||=:s.
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Empirical results

The KL(# || 7) is computed up to the normalizing constant, i.e.,
KL(7 || ) — log Z. As comparison it is taken the Laplace
approximation, i.e. AlaPlace = \/(zg, (V2 log 1 (z9))~1), obtained
from the Taylor approximation of log7(z) around a proper mode
(point where the gradient is 0) zp find with the L-BFGS algorithm.
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Gaussian VI (through Sarkka's integration) - d = 2
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@
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Figure 7: Results in dimension d = 2, ¥ = 10 for a separation factor s = 1.5 (upper row) and s = 2
(lower row). The left column shows the true density via contour lines, the true mean (black dot) and
covariance (black ellipsoid), and the results of the Laplace and Wasserstein V1 approximations as
blue and red ellipsoids respectively. The right column shows the evolution of the left KL divergence
for Gaussian VI on a logarithmic scale. The corresponding KL divergence obtained with Laplace
approximation is shown as a blue straight line
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Gaussian VI (through Sarkka's integration) - d = 10

Evolution of the fres energy
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Figure 8: Results in dimension d = 10, N' = 50 for a separation factor s = (.G (upper row) and
5 = 1.5 (lower row). Left column: synthetic dataset projected onto the two first coordinates. Middle
column: histogram representing the number of examples predicted at a given probability by the
obtained classifier. Right column: convergence in terms of unnormalized KL divergence. The
unnormalized KL is computed via (55) letting Z = 1 (upper row) and Z = 10" {lower row). The
Runge-Kutta step size is set to (0.1,

50



Empirical results
0000@000000

Gaussian VI (through Sarkka's integration) - d = 100

Evolution of the free energy
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Figure 9: Same as Figure 8 but with dimension d = 100, N = 500, with separation factor s = (.05
(upper row) and s = 0.3 (lower row). The unnormalized KL is computed letting Z = 1 (upper row)
and Z = 10'"™ (lower row). The unnormalized KL divergence for the Laplace method is not shown
in the lower plot because it is too large to be visualized.
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Mixture of Gaussian VI
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Figure 13: A target with 4 equally weighted modes and isotropic covariances
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Mixture of Gaussian VI
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Figure 14: A target with 4 non-equally weighted modes and isofropic covariances
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Mixture of Gaussian VI
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