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Problem

Variational inference

Given a target distribution π ∝ exp(−V ), determine an
approximation:

π̂ ∈ argmin
p∈P

KL(p∥π),

where P is an ambiguity set.

The Kullback–Leibler (KL) divergence is defined as:

KL(p∥π) =


∫
X log

(
dp
dπ (x)

)
dπ(x), if p ≪ π,∫

X p(x) log
(
p(x)
π(x)

)
dx , if p, π ≪ Leb.
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Bayesian inference

Bayesian inference framework

We want to make inference (e.g., compute expectation,
covariance. . . ) on a posterior distribution π on a space Θ:

π(θ) := p(θ | x) = p(x | θ)p(θ)
p(x)

.

Defining the potential V (θ) = − log(p(x | θ))− log(p(θ)), then
π ∝ exp(−V ).

Two approaches:

Monte Carlo Markov chains (MCMC);

Variational inference (VI).
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MCMC

Idea: build a Markov chain (Xt)t≥0 with π as stationary
distribution. Then take (Xt)t≥t̄ as samples from π.

Langevin MC

(Xt)t≥0 are solution of the Langevin SDE

dXt = −∇V (Xt)dt +
√
2dBt (1)

where (Bt)t≥0 is the standard Brownian motion.

The marginal laws µt of the solution of (Xt)t≥0, are the solution of
the Fokker-Planck PDE

∂tµt = div(µt∇ log
µt
π
)

and it converges to the stationary distribution π

5



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

MCMC

Idea: build a Markov chain (Xt)t≥0 with π as stationary
distribution. Then take (Xt)t≥t̄ as samples from π.

Langevin MC

(Xt)t≥0 are solution of the Langevin SDE

dXt = −∇V (Xt)dt +
√
2dBt (1)

where (Bt)t≥0 is the standard Brownian motion.

The marginal laws µt of the solution of (Xt)t≥0, are the solution of
the Fokker-Planck PDE

∂tµt = div(µt∇ log
µt
π
)

and it converges to the stationary distribution π

5



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

MCMC

Idea: build a Markov chain (Xt)t≥0 with π as stationary
distribution. Then take (Xt)t≥t̄ as samples from π.

Langevin MC

(Xt)t≥0 are solution of the Langevin SDE

dXt = −∇V (Xt)dt +
√
2dBt (1)

where (Bt)t≥0 is the standard Brownian motion.

The marginal laws µt of the solution of (Xt)t≥0, are the solution of
the Fokker-Planck PDE

∂tµt = div(µt∇ log
µt
π
)

and it converges to the stationary distribution π
5



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

MCMC

Idea: build a Markov chain (Xt)t≥0 with π as stationary
distribution. Then take (Xt)t≥t̄ as samples from π.

Langevin MC

(Xt)t≥0 are solution of the Langevin SDE

dXt = −∇V (Xt)dt +
√
2dBt (2)

where (Bt)t≥0 is the standard brownian motion.

Advantages:

samples from real distribution;

non-asymptotic guarantees when π is strongly log-concave.

Disadvantages:

generally slow, in particular in high-dimensional settings.
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VI

Variational inference

The VI setting consists in finding a tractable approximation π̂ of π
solving

π̂ ∈ argmin
p∈P

KL(p||π)

and then computing the quantity of interests on π̂.

Advantages:

fast computation of statistics of π̂.

Disadvantages:

approximation of the target distribution;

theoretical guarantees?
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VI

Variational inference

The VI setting consists in finding a tractable approximation π̂ of π
solving

π̂ ∈ argmin
p∈P

KL(p||π)

and then computing the quantities of interest on π̂.

In the paper, the problem is addressed in the cases of

P = BW(Rd) := {non-degenerate d-dimensional Gaussians};
P = {mixtures of d-dimensional Gaussians}.
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Particle system

Theorem

Given (Xt)t≥0 solutions of the Langevin diffusion, with Xt ∼ πt ,
mt = E[Xt ] and Σt = cov(Xt), then

ṁt = −Eπt [∇V (Xt)]

Σ̇t = 2I − Eπt [∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt)]

Särkkä’s heuristic

Taking Yt ∼ pt = N (mt ,Σt), the system of ODE

ṁt = −Ept [∇V (Yt)]

Σ̇t = 2I − Ept [∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]

yields to an evolution (pt)t≥0 of gaussians.
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Problem geometry

Optimization problem

π̂ ∈ argmin
p∈P

KL(p||π)

where P = {pθ : θ ∈ Θ}

The choice of P determines the geometry of the searching problem.

In Rd : ẋt = −∇F (xt)
(”continuous-time” gradient descent)

In P = BW(Rd): ∂tµt = −∇BWF(µt)
(gradient flow)

∇BW? Discretization?
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Results

Claim: The gradient flow of KL(·||π) in the space BW(Rd)
endowed with the Wasserstein distance solves Särkkä’s ODEs.

Consequences:

(pt)t≥0 converges (rapidly) to the Gaussian VI solution π̂
when π is strongly log-concave;

the discretized algorithm has non-asymptotic sharp guarantees
when π is strongly log-concave and log-smooth.

An extension with P as space of mixtures of Gaussian is then
derived.
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Consequences:

(pt)t≥0 converges (rapidly) to the Gaussian VI solution π̂
when π is strongly log-concave;

the discretized algorithm has non-asymptotic sharp guarantees
when π is strongly log-concave and log-smooth.

An extension with P as space of mixtures of Gaussian is then
derived.

11



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

Results

Claim: The gradient flow of KL(·||π) in the space BW(Rd)
endowed with the Wasserstein distance solves Särkkä’s ODEs.
Consequences:

(pt)t≥0 converges (rapidly) to the Gaussian VI solution π̂
when π is strongly log-concave;

the discretized algorithm has non-asymptotic sharp guarantees
when π is strongly log-concave and log-smooth.

An extension with P as space of mixtures of Gaussian is then
derived.

11



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

Results

Claim: The gradient flow of KL(·||π) in the space BW(Rd)
endowed with the Wasserstein distance solves Särkkä’s ODEs.
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Wasserstein space

Riemannian structure

We consider P2(Rd) with the following Riemannian structure
(Otto):

TµP2(Rd) = {∇ψ | ψ : Rd → R}, µ ∈ P2(Rd)

⟨v ,w⟩µ =

∫
Rd

⟨v(θ),w(θ)⟩Rddµ(θ), v ,w ∈ TµP2(Rd)

Metric structure

P2(Rd) is a metric space with the Wasserstein metric (Benamou -
Brenier):

W 2
2 (µ0, µ1) = inf

{∫ 1

0
∥ ∇ξ ∥2µt

dt | ∂tµt = − div(µt∇ξ)
}
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Bures-Wasserstein space

BW(Rd) is identified with Rd × Sd
++, where

Sd
++ = {Σ ∈ Rd×d | Σ ≻ 0,Σt = Σ}.

Properties

It inherits the Riemannian (and metric) structure of P2(Rd);

known closed-form for the Wasserstein distance and the
optimal transport map.

Riemannian structure

In particular, the tangent space is identified with

Tp BW(Rd) = {x 7→ a+ S(x −mp) | a ∈ Rd ,S ∈ Sd} ∼= Rd × Sd

where Sd = {S ∈ Rd×d | S t = S}.
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Gradient flows in BW(Rd)

Goal: derive gradient flows (pt)t≥0 of KL(· | π) in BW(Rd).

Bures-JKO scheme (proximal point algorithm):

Bures-JKO scheme

Given h > 0,

pk+1,h := argmin
p∈BW(Rd )

{KL(p ∥ π) + 1

2h
W 2

2 (p, pk,h)}

We then define pt := limh→0 p⌊t/h⌋,h
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Gradient flows in BW(Rd)

Goal: derive gradient flows (pt)t≥0 of KL(· | π) in BW(Rd).

Projection of the Wasserstein gradient on T BW(Rd);

Direct computation of Bures-Wasserstein gradient.

Bures-Wasserstein gradient

∇BWf (m,Σ) = (∇mf (m,Σ), 2∇Σf (m,Σ))

∇BW KL(p ∥ π) = (Ep[∇V ],Ep[∇2V ]− Σ−1
p )

Gradient flow

In the previous ways, we obtain ∇BWKL(µ ∥ π) in µ. The gradient
flow (pt)t≥0 in BW(Rd) is a solution of

∂tpt = −∇BWKL(pt ∥ π)

15



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

Gradient flows in BW(Rd)

Goal: derive gradient flows (pt)t≥0 of KL(· | π) in BW(Rd).

Projection of the Wasserstein gradient on T BW(Rd);

Direct computation of Bures-Wasserstein gradient.

Bures-Wasserstein gradient

∇BWf (m,Σ) = (∇mf (m,Σ), 2∇Σf (m,Σ))

∇BW KL(p ∥ π) = (Ep[∇V ],Ep[∇2V ]− Σ−1
p )

Gradient flow

In the previous ways, we obtain ∇BWKL(µ ∥ π) in µ. The gradient
flow (pt)t≥0 in BW(Rd) is a solution of

∂tpt = −∇BWKL(pt ∥ π)

15



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

Gradient flows in BW(Rd)

Goal: derive gradient flows (pt)t≥0 of KL(· | π) in BW(Rd).

Projection of the Wasserstein gradient on T BW(Rd);

Direct computation of Bures-Wasserstein gradient.

Bures-Wasserstein gradient

∇BWf (m,Σ) = (∇mf (m,Σ), 2∇Σf (m,Σ))

∇BW KL(p ∥ π) = (Ep[∇V ],Ep[∇2V ]− Σ−1
p )

Gradient flow

In the previous ways, we obtain ∇BWKL(µ ∥ π) in µ. The gradient
flow (pt)t≥0 in BW(Rd) is a solution of

∂tpt = −∇BWKL(pt ∥ π)

15



Problem Variational inference Gradient flows in BW (Rd ) Theoretical guarantees Mixtures of Gaussians

Särkkä equivalence

Theorem

(pt = p(mt ,Σt))t≥0, gradient flow of KL(µ ∥ π) in BW(Rd),
satisfies Särkkä’s system of ODEs

ṁt = −E[∇V (Yt)]

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]

16
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Continuous-time convergence

α-convexity

We say F , functional on BW(Rd), is α-convex for α ∈ R if, on the
constant-speed geodesic (pt)t∈[0,1],

F(pt) ≤ (1− t)F(p0) + tF(p1)− α
t(1− t)

2
W 2

2 (p0, p1)

Lemma

For any α ∈ R, ∇2V ⪰ αI (π strongly log-concave), then KL(·||π)
is α-convex on BW(Rd).
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Continuous-time convergence

Corollary

Let ∇2V ⪰ αI for a certain α ∈ R. Then, for any p0 ∈ BW(Rd),
there exists a unique solution for the gradient flow in BW(Rd) of
KL(·||π) started at p0. Moreover,

1 If α > 0, then for all t ≥ 0,

W 2
2 (pt , π̂) ≤ exp(−2αt)W 2

2 (p0, π̂)

2 If α > 0, then for all t ≥ 0,

KL(pt ∥ π)−KL(π̂ ∥ π) ≤ exp(−2αt) {KL(p0 ∥ π)−KL(π̂ ∥ π)}

3 If α = 0, then for all t > 0,

KL(pt ∥ π)−KL(π̂ ∥ π) ≤ 1

2t
W 2

2 (p0, π̂)
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Discretization

To discretize in t the gradient flow (pt)t≥0, two approaches are
possible:

Numerical integration of Särkkä’s system of ODE

ṁt = −E[∇Vt(Yt)]

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]

with Yt ∼ pt = N (mt ,Σt)

Drawback: theoretical guarantees?
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Discretization

Bures-Wasserstein SGD algorithm.

Algorithm Bures–Wasserstein SGD

Require: α > 0, step size h > 0, m0 and Σ0

1: for k = 1, . . . ,N do
2: Draw a sample X̂k ∼ pk
3: mk+1 ← mk − h∇V (X̂k)
4: Mk ← I − h(∇2V (X̂k)− Σ−1

k )
5: Σ+

k ← MkΣkMk

6: Σk+1 ← clip1/αΣ
+
k

7: end for

It can be shown that

p+k := pmk+1,Σ
+
k
= exppk (−h∇BW KL(pk ∥ π)(X̂k)) (SG step of h).

20
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Non-asymptotic results

Theorem

Assume that 0 ≺ αI ⪯ ∇2V ⪯ I (π strongly log-concave and
log-smooth). Also, assume that h ≤ α2/60 and that we initialize
Algorithm 1 at a matrix satisfying α

9 I ⪯ Σµ0 ⪯ 1
α I . Then, for all

k ∈ N,

E[W 2
2 (pk , π̂)] ≤ exp(−αkh)W 2

2 (p0, π̂) +
36dh

α2
.

In particular, we obtain

E[W 2
2 (pk , π̂)] ≤ ε2

provided we set h ≍ α2ε2

d and the number of iterations to be

k ≳ d
α3ε2

log
(
W2(p0,π̂)

ε

)
.

21
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Summary (so far)

Results:

Theoretical guarantees that close the gap between Gaussian
VI and Langevin MC.

Drawbacks:

Gaussians are not always a good approximation of the target
distribution π.

The drawback can be addressed by extending the previous model
to mixtures of Gaussians.

Theorem

The set of the d-dimensional Gaussian mixtures is dense in P2(Rd)
for the metric W2.
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Geometry of the problem

The space of mixtures of Gaussians can be identified with
P2(BW(Rd)) through this relation

µ ∈ P2(Θ) ←→ pµ :=

∫
Θ
pθdµ(θ)

where Θ = Rd × Sd
++
∼= BW(Rd).

Remark

The theory of optimal transport can be derived again in the space
P2(M) whereM is a Riemannian manifold, in particular it is
well-defined the gradient flow of µ 7→ KL(pµ ∥ π) in P2(BW(Rd)).
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Interacting particles algorithm

Let µ ∈ P(BW(Rd)) 7→ F(µ) = KL(pµ ∥ π) ∈ R ∪ {∞}.

Theorem

The gradient flow (µt)t≥0 of the functional F over P2(BW(Rd))
can be described as follows. Let θ0 = (m0,Σ0) ∼ µ0, and let
θt = (mt ,Σt) evolve according to the system of ODEs:

ṁt =− E[∇ log
pµt

π
(Yt)],

Σ̇t =− E
[
∇2 log

pµt

π
(Yt)

]
Σt − ΣtE

[
∇2 log

pµt

π
(Yt)

]
,

where Yt ∼ N (mt ,Σt). Then θt ∼ µt .
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Interacting particles algorithm

To implement the Gaussian particles scheme we take N <∞
Gaussian particles, i.e., mixtures of N Gaussians

µ0 =
1

N

N∑
i=1

δ
θ
(i)
0

=
1

N

N∑
i=1

δ
(m

(i)
0 ,Σ

(i)
0 )
↔ pµ0 =

1

N

N∑
i=1

p
(m

(i)
0 ,Σ

(i)
0 )
.

It follows

µt =
1

N

N∑
i=1

δ
θ
(i)
t

=
1

N

N∑
i=1

δ
(m

(i)
t ,Σ

(i)
t )
↔ pµt =

1

N

N∑
i=1

p
(m

(i)
t ,Σ

(i)
t )
.

Or we can use a proximal point method analogous to the
Bures-JKO scheme:
(θ

(1)
t + h, . . . , θ

(N)
t + h) ≈

≈ argmin
θ(1),...,θ(N)∈Θ

[
KL

(
1

N

N∑
i=1

pθ(i)

∥∥∥∥∥π
)

+
1

2Nh

N∑
i=1

W 2
2 (pθ(i) , pθ(i)t

)

]
.
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Pros and cons

Advantages:

(Hope of) asymptotic convergence to an arbitrary good
approximation of the target distribution π given N sufficiently
large.

Drawbacks:

Lack of theoretical guarantees as in Gaussian VI and Langevin
MC because

µ 7→ KL(pµ ∥ π)

is in general not convex, even if π is strongly log-concave.
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Extensions with changing weights

In the paper a possible extension is suggested to take into account
mixtures of Gaussians with changing weights:

µt =
N∑
i=1

w
(i)
t δ

(m
(i)
t ,Σ

(i)
t )
↔ pµt =

N∑
i=1

w
(i)
t p

(m
(i)
t ,Σ

(i)
t )
.

Idea: use the Wasserstein-Fisher-Rao (Hellinger-Kantorovich)
geometry, which admits change of mass. Each Gaussian particle is
provided with a mass which evolves with the other parameters.
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Extensions with changing weights

Theorem

Let Y
(i)
t ∼ N (m

(i)
t ,Σ

(i)
t ), and let r

(i)
t =

√
w

(i)
t . Then, the system

of ODEs is given by:

ṁ
(i)
t = −E

[
∇ log

pµt

π

(
Y

(i)
t

)]
,

Σ̇
(i)
t = −E

[
∇2 log

pµt

π

(
Y

(i)
t

)]
Σ
(i)
t − Σ

(i)
t E

[
∇2 log

pµt

π

(
Y

(i)
t

)]
,

ṙ
(i)
t = −

E
[
log

pµt

π

(
Y

(i)
t

)]
− 1

N

N∑
j=1

E
[
log

pµt

π

(
Y

(j)
t

)] r
(i)
t .
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Summary

Results of the paper:

Gaussian VI framework which close the gap with Langevin MC
in terms of theoretical guarantees;

mixtures of Gaussians VI framework with good empirical
results.

Limits:

Lack of theoretical guarantees for the mixture of Gaussians
model;

no in-depth analysis of the mixture of Gaussians VI with
changing weights and the Wasserstein-Fisher-Rao geometry.
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Thank you for your attention!
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Proof of Särkkä’s theorem

It is known (Ambrosio et al., 2008):

∇W2 KL(µ ∥ π) = ∇ log
µ

π

Let (πt)t≥0 evolve along the Fokker-Planck PDE.
According to Otto calculus, if x0 ∼ π0 and

ẋt = vt(xt) = −∇ log
πt
π
(xt)

then xt ∼ πt .
From explicit computation (integrating by parts) of

ṁt = ∂tEπt [xt ]

Σ̇t = ∂tEπt [xt ⊗ xt ]− ∂t(Eπt [xt ]⊗ Eπt [xt ])

follows Särkkä’s system of ODEs.
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Bures-JKO scheme

Gaussian VI

pt+h = min
p∈BW(Rd )

L(m,Σ) =KL(pm,Σ ∥ π)+

+
1

2h
∥ mt −m ∥2 + 1

2h
B2(Σt ,Σ)

Särkkä’s system of ODEs can be derived by computing the critical
points from

∇mL(m,Σ) = 0

∇ΣL(m,Σ) = 0

and then computing the limit for h ↓ 0.
The process is analogous to the proximal point algorithm for
mixture of Gaussians.
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Otto calculus

In P(Rd), with Otto-Wasserstein riemannian structure, for every
nice and regular curve (µt)t≥0, there exist a tangent field
(vt = ∇ϕt)t≥0 such that

∂tµt + div(µtvt) = 0

W 2
2 (µ0, µ1) = inf

γ∈C(µ,ν)
{
∫
Rd×Rd

∥ x − y ∥2 dγ(x , y)}

=

∫
Rd

∥ x − T (x) ∥2 dµ0

logµ ν = ∇ϕµ→ν − id

expµ v = (id + v)µ
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Complements on Bures-Wasserstein space

If (pt)t≥0 is a curve in BW(Rd) with tangent vector in time 0 of
(a, S), then

ṁt = a

Σ̇t = SΣ0 +Σ0S

For any curve (mt ,Σt)t≥0 with tangent vector (a,S) at time t = 0
is defined as ∇BW f (m0,Σ0) = (ā, S̄) such that

⟨∇BW f (m0,Σ0), (a, S)⟩pm0,Σ0
= ∂t |t=0 f (mt ,Σt).

⟨ā, a⟩+ ⟨S̄ ,Σ0S⟩ = ⟨∇mf (m0,Σ0), a⟩+ 2⟨∇Σf (m0,Σ0),Σ0S⟩.

It follows:

∇BW f (m,Σ) = (∇mf (m,Σ), 2∇Σf (m,Σ)) .
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Proof of continuous-time convergence

F functional, (pt)t≥0 and (qt)t≥0 solutions of g.f. of F .

F(pt) ≥ F(qt) + ⟨∇(F(qt)), logqt (pt)⟩qt +
α
2 d

2(pt , qt)
∂td

2(pt , qt) ≤ −2αd2(pt , qt)
Grownwall’s inequality: d2(pt , qt) ≤ exp(−2αt)d2(p0, q0)

Taking qt = p∗, ∀t ≥ 0, if α > 0

0 = F(p∗)
Conv.
≥ F(p) + ⟨∇F(p), logp(p∗)⟩p +

α

2
d2(p, p∗)

Young
≥ F(p)− 1

2α
∥∇F(p)∥2p −

α

2
∥ logp(p∗)∥2p︸ ︷︷ ︸

=d2(p,p∗)

+
α

2
d2(p, p∗)
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Proof of continuous-time convergence

pt gradient flow =⇒ ∂tF(pt) = − ∥ ∇F(pt) ∥2pt
∂tF(pt) ≤ −2αF(pt)

Gronwall
=⇒ F(pt) ≤ exp(−2αt)F(p0)

If α = 0,

Lyapunov functional: Lt := tF(pt) +
1

2
d2(pt , p

∗)

∂tLt = F(pt)− t ∥ ∇F(pt) ∥2pt +⟨logpt (p
∗),∇F(pt)⟩pt ≤ 0

Lt ≤ L0 =⇒ F(pt) ≤
d2(p0, p

∗)

2t
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Complements on Bures-SGD

We have gp := ∇BWF(p) = (Ep[∇V ],Ep[∇2V ]− Σ−1), and
therefore the stochastic gradient ĝp := (∇V (X̂ ),∇2V (X̂ )− Σ−1).
Clip operator:

clip τ : Σ =
d∑

i=1

λiuiu
t
i 7→ clip τΣ :=

d∑
i=1

(λi ∧ τ)uiuti

Lemma (Altschuler et al., 2023): For any m ∈ Rd , τ > 0, and
Σ,Σ′ ∈ Sd

++,

W2(pm,clip τΣ, pm,clip τΣ′) ≤W2(pm,Σ, pm,Σ′)
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Proof of non-asymptotic guarantees

Lemma: If 0 ≺ αI ⪯ ∇2V ⪯ I and h ≤ α2/60. Then, if in
Bures-SGD, Σk ⪰ α

9 I , then Σ+
k ⪰

α
9 I .

Sketch of proof: The idea is to write Σ+
k as a generalized

Bures-Wasserstein barycenter at Σk for a certain distribution P, i.e.

Σ+
k = expΣk

(∫
logΣk

(Σ)dP(Σ)

)
Then, some inequality results from Altschuler et al., 2023 are
exploited.
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Särkkä JKO BW(Rd ) Convergence Non-asymptotic Mixtures of G. HK geometry Empirical results

Proof of non-asymptotic guarantees

Fk := σ(X̂0, X̂1, X̂2, . . . , X̂k−1)

We bound

E[W 2
2 (pk+1, π̂) | Fk ] ≤ E[W 2

2 (p
+
k , π̂) | Fk ]

By writing the Wasserstein distance as expectation under the
optimal coupling of Xk ∼ pk and Z ∼ π̂ and then bounding it
through strong convexity of KL(· ∥ π), it holds

E[W 2
2 (pk+1, π̂) | Fk ] ≤ (1− 2αh)W 2

2 (pk , π̂) + h2err

39
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Proof of non-asymptotic guarantees

Using the previous lemma, the definition od the stochastic gradient
and Poincaré inequality, it holds

err ≤ 36d

α
+ 6W 2

2 (pk , π̂)

Assuming h ≤ α2

60 ,

E[W 2
2 (pk+1, π̂) | Fk ] ≤ (1− αh)W 2

2 (pk , π̂) +
36dh2

α

The theorem follows by iterating this result and by small step
approximation.
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Complements on mixtures of Gaussians

Given (M, g) Riemannian manifold,

P2(M) := {µ ∈ P(M) |
∫

d2(p0, ·)dµ <∞ for some p0 ∈M}

W 2
2 (µ, ν) := [ inf

γ∈C(µ,ν)

∫
d2(x , y)dγ(x , y)]

TµP2(M) := {∇ψ | ψ ∈ C∞c (M)}L
2(µ)

⟨v ,w⟩µ :=

∫
gp(v(p),w(p))dµ(p)

Given a functional F , ∇W2F(µ) is the element of TµP2(M) such
that, for any curve (µt)t≥0 which satisfies the transport equation
∂tµt + div(µtvt) = 0 with µ0 = µ, it holds

∂t |t=0F(µt) = ⟨∇W2F(µ), v0⟩µ =

∫
g(∇W2F(µ), v0) dµ
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Complements on mixtures of Gaussians

It follows, using the transport equation and integrating by parts,
that

∇W2F(µ) = ∇δF(µ)
where δF(µ) :M→ R is the first variation of F at µ. It satisfies

∂t |t=0F(µt) =
∫
δF(µ) ∂t |t=0 µt

To find the system of ODEs for the KL divergence functional when
M = BW(Rd), the first variation of the functional is computed
and its Bures-Wasserstein gradient. The ODEs for the evolution of
the gradient flow then follow the relation

ṁ0 = a

Σ̇0 = SΣ0 +Σ0S

for every curve (mt ,Σt)t≥0 in the BW(Rd) space with tangent
vector (a, S) in 0.
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Lack of convexity

The functional µ 7→ KL(pµ ∥ π) is not convex even when π is
strongly log-concave.
Let d = 1,V = 0, then KL(pµ ∥ π) = H(pµ). Let
µ0 = N (0, 1)⊗ δ1, µ1 = N (0, τ2)⊗ δ1. For the optimal coupling,
σ20 = σ21 = 1 and m1 = τm0. The geodesic is thus
{µt = N (0, (1− t + tτ)2)⊗ δ1}t∈[0,1]. Thus,

pµt =

∫
N (m, σ2)dµt(m, σ

2) = N (0, 1 + (1− t + tτ)2)

Hence,

H(pµt ) =

∫
pµt log pµt = −

1

2
log(2πe)− 1

2
log(1 + (1− t + tτ)2)

Concave in [0, 1] for τ = 1/2.
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Särkkä JKO BW(Rd ) Convergence Non-asymptotic Mixtures of G. HK geometry Empirical results

Complements on HK (WFR) geometry

Fisher-Rao (Hellinger)

SpaceM+(Rd) of
positive measures.

Fisher-Rao (Hellinger)
distance:

d2
FR(µ0, µ1) =

∫
(
√
µ0−
√
µ1)

2

Curves follow:

∂tµt = αtµt

∥α∥2µ =
1

4

∫
α2 dµ

Wasserstein

Space P2(Rd) of
probability measures.

Wasserstein distance.

Curves follow:

∂tµt + div(µtvt) = 0

∥v∥2µ =

∫
∥v∥2 dµ
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Complements on HK (WFR) geometry

Wasserstein-Fisher-Rao (Hellinger-Kantorovich) geometry

SpaceM+(Rd)

TµM+(Rd) = {(α, v) | ∃u : Rd → R, α = u, v = ∇u}
Curves follow:

∂tµt + div(µtvt) = αtµt

Norm:

∥ (α, v) ∥2µ=
∫
(α2+ ∥ v ∥2)dµ

Wasserstein-Fisher-Rao distance:

WFR2(µ0, µ1) := inf{
∫ 1

0
∥ (αt , vt) ∥2µt

dt |

(µt , αt , vt) solves reaction-diffusion PDE}
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Complements on HK (WFR) geometry

The idea to develop the particle system algorithm is to define
particles with mass (xt , rt) where the trajectory t 7→ xt develops
along a diffusion process and the mass along a reaction process, i.e.

ẋt =vt(xt)

ṙt =(αt −
∫
αtdµt)rt (normalized to evolve in P2(M))

To derive the gradient flow, we take vt and αt as the WFR
gradient of the KL functional.
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Empirical results

Target: Bayesian logistic regression.

synthetic dataset: D = {(xi , yi ) : i = 1, . . . ,N};
binary label yi ∈ {0, 1}, given by (z ∈ Rd)

π(yi | xi , z) = σ(x ti z)
yi (1− σ(x ti z))1−yi

target posterior with uninformative prior:

π(z | D) = 1

Z

N∏
i=1

π(yi | xi , z)

Langevin dynamic associated to:

−∇V (z) = ∇ log π(z | D) =
N∑
i=1

(yi − σ(x ti z))xi

xi generated from two Gaussian distributions N (m∗
yi
,Σ∗) with

separation factor ∥ m∗
1 −m∗

0 ∥=: s.
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Empirical results

The KL(π̂ ∥ π) is computed up to the normalizing constant, i.e.,
KL(π̂ ∥ π)− logZ . As comparison it is taken the Laplace
approximation, i.e. π̂Laplace = N (z0, (∇2 log 1

π (z0))
−1), obtained

from the Taylor approximation of log π(z) around a proper mode
(point where the gradient is 0) z0 find with the L-BFGS algorithm.
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Gaussian VI (through Särkkä’s integration) - d = 2
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Gaussian VI (through Särkkä’s integration) - d = 10
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Gaussian VI (through Särkkä’s integration) - d = 100
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Mixture of Gaussian VI
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Mixture of Gaussian VI
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Mixture of Gaussian VI
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