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Abstract

Black-box optimization is a framework for optimizing problems for which a
model or function is not explicitly provided or is too complex to be used by
direct analytical means. In this context, the use of genetic algorithms is an es-
tablished way to solve complex real-world problems of different types. A reliable
analysis of their performance can be done through the study of the number of
evaluations of solution candidates. In recent years, many studies about perfor-
mance analysis highlighted the role of parameters in evolutionary algorithm’s
performance, and proposed several solutions to adapt the parameters in or-
der to enhance speed, including the use of reinforcement learning. The limits
of this novel approach highlighted the necessity of a deeper understanding of
algorithms behavior in new settings.

In this thesis, we present an overview of the state of the art in black-box
optimization and parameter control, existing theoretical results, and our contri-
butions. We developed and tested a methodology to exploit information from
enhanced state spaces in dynamic policies for the specific case of RLS, a ran-
domized local search algorithm with dynamic choice of the search radius. We
investigated optimal or close-to-optimal control policies for this algorithm for
different scenarios optimizing the LEADINGONES problem. This work offers a
foundational example that could inspire broader development of new dynamic
parameter policies in enhanced state spaces.
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Abstract (in italiano)

L’ottimizzazione black-box & un framework per l'ottimizzazione di problemi
in cui un modello o una funzione non sono esplicitamente forniti oppure sono
troppo complessi per essere utilizzati con metodi analitici diretti. In questo
contesto, 'uso degli algoritmi genetici rappresenta un approccio consolidato
per risolvere problemi reali complessi di varia natura. Un’analisi affidabile delle
loro prestazioni puo essere condotta studiando il numero di valutazioni di pos-
sibili candidati soluzione. Negli ultimi anni, numerosi studi sull’analisi delle
prestazioni hanno evidenziato il ruolo cruciale dei parametri nell’efficacia degli
algoritmi evolutivi, proponendo diverse strategie per adattarli al fine di miglio-
rare la velocita, tra cui 'uso del reinforcement learning. Tuttavia, i limiti di
questo approccio innovativo hanno messo in luce la necessita di una compren-
sione piu approfondita del comportamento degli algoritmi in nuovi contesti.

In questa tesi, presentiamo una panoramica dello stato dell’arte nell’ ottimiz-
zazione black-box e nel controllo dei parametri, discutendo i risultati teorici
esistenti e i nostri contributi. Abbiamo sviluppato e testato una metodologia
per sfruttare le informazioni provenienti da spazi di stato estesi nelle policy
dinamiche, con particolare riferimento al caso dell’RLS, un algoritmo di ricerca
locale randomizzato con scelta dinamica del raggio di ricerca. Abbiamo studiato
politicy di controllo dei parametri ottimali o quasi ottimali per questo algoritmo
in diversi scenari di ottimizzazione del problema LEADINGONES. Questo lavoro
fornisce un esempio fondamentale che potrebbe ispirare un pitt ampio sviluppo
di nuove policy dinamiche per parametri in spazi di stato estesi.
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Chapter 1

Introduction

Optimization plays a crucial role in modern life. The rise of machine learn-
ing and data-driven methodologies in various industries has raised the need for
efficient methods to make optimal decisions. The mathematical framework ad-
dressing these growing demands is the field of optimization, which is currently
experiencing rapid advancements as a result. This discipline lies at the inter-
section of mathematics and computer science, focusing on the development of
efficient algorithms capable of solving complex optimization problems. These
algorithms are often tailored to the specific formulation of the problems they
address. However, many real-world challenges involve optimization tasks in
which the objective lacks a closed-form mathematical expression, and informa-
tion about the function to optimize is only available through costly evaluations.
This scenario is the focus of black-box optimization, a field dedicated to design-
ing algorithms that operate iteratively without access to the objective’s closed
form. Among the most prominent approaches in black-box optimization are
evolutionary algorithms, which mimic the processes of mutation and selection
found in nature to iteratively improve solutions.

The study of these types of algorithms is primarily empirical [37], but theo-
retical investigations have also yielded significant insights in the field. In partic-
ular, several mathematically grounded concepts and tools have been developed
to analyze the performance of black-box algorithms on benchmark problems.
Among these, black-box complexity [27] and drift analysis [58] have proven espe-
cially fruitful. These tools enable precise studies of benchmark algorithms, such
as RLS and (1+1) EA, as well as benchmark problems, including LEADINGONES
and ONEMAX. Research in this area has highlighted the strong dependence of
algorithm performance on parameter choices. For instance, it has been shown
that the control of the radius parameter in RLS solving LEADINGONES can
significantly affect the algorithm’s exact performance, particularly in terms of
the asymptotic runtime constant [8].

Recently, a new framework for parameter control, known as dynamic al-
gorithm configuration (DAC), has been introduced. This framework aims to
dynamically adjust algorithm parameters during runtime by leveraging infor-
mation about the algorithm’s current state. The typical DAC approach utilizes
a reinforcement learning (RL) agent, where the agent’s actions correspond to
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selecting the algorithm’s current configuration.

In [7], a DAC agent was applied to control the radius parameter of RLS on
LEADINGONES. The study demonstrated promising results for this approach
but also highlighted several challenges that required further attention. In partic-
ular, the reinforcement learning (RL) agent exhibited difficulties in generalizing
its policy as the problem dimension increased. The paper suggested further ex-
ploration of the problem, including a potential direction inspired by promising
preliminary results in [11]: incorporating additional information into the state
space of the parameter policy to enhance algorithm performance. A deeper un-
derstanding of how different state space representations affect the RL agent’s
behavior could be a crucial step toward addressing these challenges.

In this thesis, we tackle this problem by developing new parameter policies
for RLS on LEADINGONES and comparing them against state-of-the-art policies.
Through experiments conducted in various settings, we analyze the successes
and limitations of these approaches, shedding light on unresolved challenges
and posing new questions for future research in the field. We studied the effect
of including further state information in the parameter policy rather than only
the fitness value in both mutation and selection mechanisms of the algorithm.
By providing exact computation of the expected runtime for low dimensions
and Monte Carlo approximations in high dimensions, we show that the algo-
rithm performance significantly improves when new information is exploited
both for mutation and for selection; when it is exploited only for mutation,
the improvement seems not to be statistically significant. We highlighted the
differences of the two approaches and raised questions for further development
of these methods, in particular in terms of generalization in high dimensions.

The thesis is organized as follows. In Chapter 2, we present a comprehensive
introduction to black-box optimization. We first outline the general framework
and cite some applications, and then describe the main algorithms we will focus
on. In the last sections of the chapter, we give a general theoretical overview
of the topics of black-box optimization, drift analysis and parameter control.
In Chapter 3, we present the main results of black-box complexity and param-
eter control, focusing on the algorithms RLS and (1 + 1) EA on the problems
LEADINGONES and ONEMAX. These results constitute the theoretical basis for
our contributions. In Chapter 4, we present the problem we addressed and the
way in which we developed new parameter policies for RLS on LEADINGONES
considering enhanced state spaces. In Chapter 5, we provide the empirical re-
sults of the policies we developed in various settings and the comparison with
the state-of-the-art. In the appendix chapters, we present more deeply some
topics we mention in the thesis and provide selected proofs and more complete
results.



Chapter 2

Black-box Optimization

In this chapter, we will introduce key concepts in black-box optimization and
evolutionary computation, which form the foundation of this work. We begin
with a general overview, followed by a more detailed exploration of topics related
to performance analysis and parameter control.

2.1 Notation

In this thesis, we adopt the following notation. Let E[X] denote the expected
value of the random variable X, and P(A) the probability of event A. We use
©(g(n)), 2(g(n)), and O(g(n)) to describe the asymptotic complexity of func-
tions for n — oo: ©(g(n)) represents a function bounded both above and below
by g(n) up to constant factors, 2(g(n)) represents a lower bound, and O(g(n))
an upper bound. For binary sequences, 1"0™ refers to a string composed of n
ones followed by m zeros. Additionally, dg(x,y) denotes the Hamming distance
between bit strings x and y, defined as the number of positions in which the
corresponding bits differ. We use |z] and [z] for the floor and ceiling functions,
respectively, and log(x) for the logarithm base e. The notation (Z) represents
the binomial coefficient; we will also use the inline notation (n, k) for the bino-
mial coefficient, where its meaning will be clear from the context. |S| denotes
the cardinality of a set S. Throughout, argmin and argmax indicate the values
that minimize or maximize a function, respectively. For two integer numbers a
and b (b > a) by [a..b] we denote an integer interval, that is, all integer numbers
that are at least a and at most b; if b > 0; by [b] we indicate [0..b]. Additional
notation will be introduced and explained when used.

2.2 Black-Box Optimization

2.2.1 Black-Box Optimization Setting

Optimization is a fundamental area in Mathematics and Computer Science
focused on finding the best within a set of possible options: mathematically,
it consists of finding the value of x € S that corresponds to the optimum
(maximum or minimum) of a certain function f, called objective function, within
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a set of possible solutions S, called search space. In general, the complexity of
the problem depends on the complexity of f, e.g. how much it is rugged, noisy,
whether it is differentiable, linear, or other specific properties of the function or
of the feasible set of solutions. However, in many real-world applications, the
function f is in fact unknown or too complex to be used in its explicit form. In
cases like this, we assume that we can only rely on the evaluation of the function
in specific points of the domain. This is the setting of black-box optimization,
which will be the focus of this thesis.
The black-box optimization problem can be formulated as follows.

find z* € argmin f(z) (2.1)
z€S

where the function f is a black-box function, which means that the func-
tion works as an oracle, taking an input x and giving as output the value of
f(x). This implies that we cannot exploit analytical properties of the objec-
tive function in the optimization process: in particular, we cannot compute the
derivatives of f and thus use gradient-based methods such as gradient descent
or Newton’s method to solve (2.1). For this reason, black-box optimization is
a type of derivative-free optimization. Thus, the optimization process is only
led by the query of evaluations of the function at points in the search space, as

represented in Figure 2.1.

[nput:a

[
& by

> Output: f(x)

Figure 2.1: Basic mechanism of a black-box function

In the optimization problem (2.1), S is usually a subset of R™, where n is the
dimension of the problem, and the function f is defined S — R. This setting
is quite general and allows us to address both discrete and continuous prob-
lems, upon an appropriate choice of S. In this thesis, we will focus primarily on
discrete optimization where the search space S consists of finite elements. This
choice is motivated by the broader theoretical landscape and challenges in dis-
crete optimization. In discrete optimization, an optimal target state can often
be identified before the optimization process begins. Additionally, in continuous
optimization, gradient-based methods can sometimes be approximated even in
a black-box setting. Theoretical insights into discrete black-box optimization
have profound implications for algorithm design, particularly in problems in-
volving combinatorial structures or complex constraints, and can also inspire
the application of techniques in a continuous fashion.
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2.2.2 Applications

Black-box optimization is one of the most general optimization frameworks,
since it does not require any assumption on the objective function. In fact, it is
particularly suitable for addressing many real-world problems where building a
model is not feasible or too complex. In many of these cases, it is possible to
gain information about the quantity we would like to optimize through evalu-
ations of the objective function, which can consist in simulations or empirical
measurements. However, black-box algorithms are generally less efficient than
those that leverage the known structure of the objective function. Therefore, it
is important to apply black-box methods only when the analytical form of the
function cannot be effectively exploited.

Black-box optimization is also the framework that implicitly governs our
everyday decision-making, where choices are based on past experiences rather
than complex models of behavior. We can imagine a hypothetical well-being
function as an objective black-box function that we would like to maximize and
past experiences as evaluations of that function.

A classical, illustrative, yet playful example is the Coffee Tasting Prob-
lem [46], which consists of finding the optimal mixture of different types of
coffee, to obtain a target taste. A coffee company generally would like to keep
the taste of their mixture consistent from year to year, even if the quality of
the coffee beans changes after each harvest. In this case, the objective function
f represents the opinion of an expert who evaluates the taste of a mixture.
Obviously, f is a black-box function: it cannot be determined analytically, but
we can evaluate it with different tastings.

In general, black-box optimization algorithms are applied whenever:

o the analytical form of the function is unknown and we can evaluate the
quality of a solution only through simulations (also referred, in this case,
as simulation-based optimization);

e the analytical form of the function is too complex to be used in algorithms
that involve gradients or integrals;

e there is no method known to be better for the particular problem.
Some examples involve:

o Monte Carlo integration [85]: this is one of the simplest examples of black-
box problems. We can interpret it as a black-box, since it relies only on
the evaluation of the target function f at specific points and not on the
analytical form of it. In this case, the function we would like to study
is too complex to be derived analytically, so we rely on evaluations at
specific points to overcome the problem.

e Machine learning: many machine learning problems can be addressed
through a black-box optimization approach. An example is clustering,
one of the main problems in unsupervised learning. Having fixed the
number K of clusters, we can define as objective function a clustering
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metric M that measures the distance of the points of a cluster from its
center and uses a black-box algorithm to optimize it [61].

e Deep learning: black-box optimization can play an important role in hy-
perparameter tuning of artificial neural networks or other models. In
these cases, the relation between the choice of hyperparameters and the
performance of the model is not defined by a specific function, but the
quality of a particular configuration can be evaluated by the performance
of the network over a specific benchmark.

e Robotics: some virtual robots of different shapes have been taught to walk
upright through a simulation and optimization process that follows the
black-box optimization framework: in this case, each evaluation of the
function corresponds to a simulation [36].

o Industry applications: black-box optimization is involved in several indus-
trial applications; whenever we want to optimize a quality too complex
to be directly modeled, we can use simulations to evaluate the objective
function; this includes a variety of problems in the fields of structural
mechanics [75], wind turbines planning [4] and scheduling problems [70,
67].

2.3 Algorithms

2.3.1 Black-box Algorithms

Due to the nature of the framework, the modeling part plays a minor role
in black-box optimization, therefore algorithms gain the central role. Black-
box algorithms face the challenge of addressing a function that can be known
only through evaluations at some points in the search space. They proceed
iteratively, sampling the search space while looking for a better solution until
the optimum is reached or some termination criteria are satisfied. The general
structure is summarized in Algorithm 1 and in Figure 2.2.

Evaluation query: Evaluation query:
(21, f(21)) (e, flxg))
l-f':‘f('.f'_ﬂl b s Black — box flx:) (x5, f{xa))

"oracle’ —

L / (@ F1:))

Figure 2.2: Basic mechanism of a black-box algorithm
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It starts with a solution candidate z, usually drawn at random from the
search space S, and evaluates the objective function f on it. Then, it iteratively
generates new solution candidates based on some strategy and evaluates them
on the objective function f, while keeping track of the best solution so far.
When the termination criteria are met, the best solution is displayed as output.

Algorithm 1 General structure of a black-box algorithm

Input: Search space S, objective function f
Initialize a random solution = € S
Set best «— x
Set best_value < f(x)
while termination criteria not met do
Generate a new candidate solution 2’ € S (based on some strategy)
Evaluate f(z')
if f(2') < best_value then
Set best < 2’
Set best_value < f(x')
end if
: end while
: Output: Best solution best and its value best_ value

e e e

The algorithm structure is quite simple and general. The way new solution
candidates are generated is what characterizes different black-box algorithms;
even without making assumptions about the function f, strategies could be ef-
fectively adapted to address specific problems and several categorizations exist.

Optimization algorithms can be first divided into two classes: heuristics
and non-heuristics. We refer as heuristics to algorithms that do not include a
guarantee of success in finding the optimum: in general, these algorithms are
easier to understand and implement, and sometimes this can lead to a more
detailed analysis. Non-heuristic algorithms guarantee, by definition, conver-
gence to the global optimum. In addition, the term metaheuristics is often
used: according to [79], a metaheuristic is defined as “a high-level, problem-
independent algorithmic framework that provides a set of guidelines or strategies
to develop heuristic optimization algorithms”. Metaheuristics can also refer to
problem-specific implementations of these general strategies. Many black-box
optimization algorithms fall under the category of metaheuristics, as they pro-
vide flexible general-purpose frameworks that can be adapted to a wide range
of situations by developing problem-specific heuristics within the overarching
framework.

A further class division of optimization algorithms is between deterministic
and randomized: the difference consists of whether the new solution candidate
is generated through a deterministic process or involving randomness. A very
simple deterministic algorithm is exhaustive search [3]: it can be applied if the
search space S is discrete and finite. It consists of evaluating the objective func-
tion on each element in order to find the optimum. Usually, random algorithms,
even though they cannot guarantee consistency from one run to another, are
able to broadly explore the search space with a limited cost and help avoid
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local minima. For this reason, they have become the standard in black-box
optimization. We can cite the most common ones:

e Random sampling: random sampling is the randomized version of exhaus-
tive search. In its simplest version, it consists of sampling uniformly at
random elements from the search space S and evaluating them to find
the optimum [82]. Finest versions can be used, leveraging a quasi-random
sampling, in order to exploit some specific information about the distri-
bution of elements in the search space [69, 83].

o Surrogate-based optimization algorithms: in the surrogate-based algorithms
we overcome the complexity given by a black-box function f by replacing
the “real” black-box function with a surrogate f , i.e. an approximation,
based on some points previously sampled [33]. In these cases, f can be
chosen in many ways, such as linear regression, polynomial interpolation,
or an artificial neural network.

o Local Search: local search is the basic of many heuristic methods. The
idea is that the algorithm starts with a solution candidate and then looks
for a better point in the neighborhood of the candidate solution. If found,
the new point becomes the center of the new search neighborhood [37].
Variations of the algorithm have been developed to take advantage of dif-
ferent definitions of the neighborhood. Local search can find solutions
quite rapidly; however, it has the drawback of being likely to be stuck in
a local optimum. In order to prevent this, various techniques have been
introduced; stochastic variations of local search allow us to accept a worse
solution with a certain probability in order to let the algorithm explore
more widely the search space and avoid local optima. For example, in
the Metropolis algorithm, a worse solution candidate is accepted with a
probability that decreases exponentially as the distance from the optimum
value increases [26, 62]. A generalized version, Simulated Annealing, re-
duces this probability also over time, under the control of a parameter
called temperature [53].

o Evolutionary Algorithms: evolutionary algorithms are among the most
widely used and studied black-box algorithms. They are inspired by the
biological theory of natural selection and are quite similar to local search
but do not limit the exploration to a neighborhood of the best solution
candidate. Incorporating the ability to exploit information from different
sampled points, they build a nonuniform probability distribution on the
search space that is then used to generate new solution candidates. Since
they will be the main topic of our analysis we will describe them more in
detail in the following section.

2.3.2 Evolutionary Algorithms

As we said in the previous section, evolutionary algorithms are among the
most popular black-box algorithms, and their study constitutes the field of evo-
lutionary computation. They were developed in the second half of the 20t
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century [76] with the aim of developing automated problem solvers taking in-
spiration from the natural problem solver of species evolution. The fundamental
metaphor of evolutionary computing is indeed to apply natural evolution to a
particular style of problem solving: that of trial-and-error. The development of
evolutionary algorithms answered the challenge of providing some robust algo-
rithms, working in an acceptable time, for a wide range of problems. From their
introduction, they have been widely applied in various areas, including univer-
sity class timetabling [9, 68], industrial design optimization [52], and machine
learning [61, 34].

Evolutionary algorithms are a metaheuristic which provides a general frame-
work to design heuristics. The common underlying structure is connected to
the biological inspiration at the base of evolutionary algorithms. The key idea
comes from natural evolution: according to evolutionary theory, individuals in-
teract in an environment with a scarcity of resources; only those with a higher
fitness (identified as the quality of survive) can reproduce and pass to their off-
spring their characteristics that determine a high fitness. Out of metaphor, we
consider a function f we would like to maximize (note that maximization and
minimization are equivalent problems). We start by initializing some solution
candidates (individuals) and evaluating them using our fitness function f. If
the population has more than one individual, we can select them based on their
fitness. We apply a mutation operator which generates new solutions candi-
dates (children) from the previous (parents) and, eventually, apply a crossover
operator which mixes characteristics of the new individuals in order to augment
variety. In the end, a selection operator decides which individuals are the best
and eliminates the others before a new cycle starts. A schematic description is
provided in Algorithm 2.

Algorithm 2 General structure of an evolutionary algorithm

1: Input: Population size N, selection size k, fitness function f
2: Initialize: Generate an initial population P of N individuals at random
3: while termination condition not met do
4 Selection: Select k individuals from P based on their fitness using a
selection method
5: Crossover: Generate offspring by recombining pairs of selected indi-
viduals
Mutation: Mutate some characteristics of the offspring
Evaluation: Evaluate the fitness of the offspring using the fitness func-
tion f
8: Replacement: Select individuals to form the new population from both
parents and offspring
9: end while
10: Output: Best individual(s) found

Evolutionary algorithms are iterative by nature, meaning they progressively
refine solutions over multiple generations. The choice of stopping criteria is
crucial because it determines when the algorithm halts. Common stopping
criteria include:
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e The reach of the optimum, if feasible and if the problem has a known
optimal fitness level;

e The reach of an optimal solution within a precision € > 0;
o A fixed number of iterations;

e The drop of population diversity under a given threshold.

The path to lower fitness is guided by mutation and crossover, called vari-
ation operators, which ensure differentiation in the population and thus explo-
ration of the search space. The other leading mechanism is selection which acts
to increase the mean quality of solutions in the population. These operators
work randomly; thus evolutionary algorithms can be classified as randomized
heuristics, enabling a broader exploration of the search space and making them
effective at avoiding local optima. Within the class, they are then distinguished
on the basis of:

e representation of individuals;
e variation operators;

¢ selection mechanisms.

With representation of individuals we intend how potential candidate so-
lutions are mathematically represented with reference to the problem we want
to solve. This choice is anything but trivial: it is often one of the most dif-
ficult parts in designing an evolution algorithm and influences how variation
and selection operators are built. The individual representation indeed defines
the different classes of evolutionary algorithms. In particular, individuals are
represented as:

e strings over a finite alphabet in genetic algorithms;

real-valued vectors in evolution strategies;
o finite state machines in classical evolutionary programming,;

e trees in genetic programming.

2.3.3 Genetic Algorithms

Genetic algorithms have a particular importance: they are among the most
widely known evolutionary algorithms, and their simple structure also serves
well our aim to provide strong theoretical foundation for our analysis. Their first
use in optimization can be traced back to the seminal works of Goldberg [38]
and De Jong [14] where the Simple Genetic Algorithm (SGA) was defined.
SGA uses binary representation, i.e. individuals are represented as bit-strings,
selection proportional to the fitness, low probability of mutation and a emphasis
on genetically inspired recombination.
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Genetic algorithms then developed widely from that first example; however,
binary representation still characterizes a large part of the class. Bit-strings are
used in many practical cases where the objective function is pseudo-boolean. For
example, in binary decision problems, such as the knapsack problem. Moreover,
genetic algorithms, even in their simplest forms, such as SGA and its variants,
are still extensively studied to provide important theoretical insight and prac-
tical inspiration into the behavior of evolutionary processes in combinatorial
search spaces, as well as for benchmarking new algorithms.

While dealing with binary representation, we can build different algorithms
based on different choices of variation operators. In particular, mutation works
by changing the value from 0 to 1 and from 1 to 0 of every single bit with
a certain probability p: the choices to change bit values can be independent
from one another, i.e. each bit value is changed by flipping a coin, or can be
dependent, namely if we fix the number of bits to be flipped. In general, the
mutation operators for the bit strings are unbiased, which means that they do
not take into account the index or the value of the single bit when deciding to
flip it.

In our analysis, we are interested in the study of an efficient choice of the
mutation operator, so we will not consider recombination. However, we will give
a brief description of this technique for the sake of completeness. For binary
representation, we have three standard forms of recombination:

o One-Point Crossover [47]: it consists of creating two children by splitting
the genomes of two parents at a randomly chosen position;

o n-Point Crossover: it generalizes One-Point Crossover by dividing the
parents into multiple segments and taking alternating segments from each
parent to create a child;

o Uniform Crossover [81]: it consists of randomly choosing, for each bit,
which parent it should be inherited from when creating a new child.

We will close this section by presenting some of the most important evolu-
tionary algorithms that we will discuss later. A rather simple but theoretically
interesting algorithm is (1+1) Randomized Local Search ((14-1) RLS), or simply
Randomized Local Search (RLS). As the name suggests, it can also be seen as a
local search algorithm; however, the iterative structure and bit-string individual
representation allow us to consider it in the category of genetic algorithms. It
operates on a population of a single individual and does not involve crossover
operators. The neighborhood is defined as a ball in Hamming distance [41].
The Hamming distance between two strings is an important concept in infor-
mation theory and is defined as the number of string positions at which the
corresponding symbols are different, or the number of substitutions necessary
to obtain one string from another. In case of bit strings, it can be expressed by
the formula (2.2).

=1



CHAPTER 2. BLACK-BOX OPTIMIZATION 13

For example, two strings with one different bit value have distance 1. The
radius of the neighborhood is defined by a parameter k, which is simply called
radius and controls how many bits the algorithm flips at each step. The choice
of which bit to flip, fixed k, is then random. Our work focuses mainly on the
control of the radius parameter k.

The complete pseudocode of RLS algorithm is summarized in Algorithm 3.

Algorithm 3 (1+1) Randomized Local Search (RLS)

Input: Fitness function f, bit-string length n
Initialize: Generate a random solution x € {0, 1}"
while termination criteria are not met do
Choose the radius k
Create x’ < x by flipping k randomly chosen bits in @
if f(2') < f(z) then
T+
end if
end while
Output: Best solution x found

._.
14

We will sometimes also refer to (u+ A) Evolutionary Algorithm, (1+\) EA,
or (i, A) Evolutionary Algorithm, (u, A\) EA. Both are genetic algorithms (but
can also be adapted as evolution strategies) where p and A\ are two integers
that denote, respectively, the population size and the offspring size, selected
based on some chosen operator. In (1 + \) EA both parents and offspring are
combined to create a pool of u+ A\ individuals, while in (u, A) EA parents do not
compete to form the next generation; thus, the best p individuals are selected
from the X offspring. Mutation is carried out differently from RLS, flipping each
bit independently with probability p. If 4 = A = 1, the algorithms do not have
crossover, selection, or replacement. Algorithm 4 and Algorithm 5 summarize
(w+ ) EA and (p, A) EA respectively.

We note that RLS and (14 1) EA are very similar, with the only difference
being that the bit flips in RLS are not independent since the total number k is
fixed. We can write (1 + 1) EA as RLS, by adding a step in which & is drawn
independently as k ~ Bin(n, p).

Evolutionary algorithms have also achieved great results in the treatment
of continuous problems. We will not discuss the topic in this thesis, but we
presented in Appendix A some of the most used and known evolutionary algo-
rithms for continuous optimization.

2.4 Black-box Complexity

2.4.1 Motivations

One of the main research paths in the study of black-box algorithms and, in
particular, of evolutionary algorithms is complezity analysis. Intuitively, we
intend, as complexity how fast a class of algorithms can solve specific problem
instances; later in this section, we will give a formal definition. Of course, this
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Algorithm 4 (x + ) Evolutionary Algorithm

1:

10:
11:
12:

Input: Population size u, offspring size A, fitness function f, bit-string
length n
Initialize: Generate a population P = {z1,29,...,2,} of u random solu-
tions, each z; € {0,1}"
while termination criteria are not met do
Generate Offspring:
Create an offspring population P’ = {2/, 25, ..., 2\ } by mutating A
individuals randomly chosen from P
for each 2 € P/ do
Mutate 2 by flipping each bit independently with mutation proba-
bility p
end for
Combine populations: Create a combined population P U P’
Selection: Select the best p individuals from P U P’ based on fitness f
end while
Output: Best individual(s) found

Algorithm 5 (u, A) Evolutionary Algorithm

1:

10:
11:
12:

Input: Population size u, offspring size A, fitness function f, maximum
iterations T, bit-string length n
Initialize: Generate a population P = {z1,29,...,2,} of u random solu-
tions, each z; € {0,1}"
while termination criteria are not met do
Generate Offspring:

Create an offspring population P’ = {z/,z5,..., 2\ } by mutating A

individuals randomly chosen from P

for each z € P/ do
Mutate 2 by flipping each bit independently with mutation proba-

bility p

end for

Selection: Select the best y individuals from P’ based on fitness f

Replace: Set P < {z7,25,...,2,} (the best y offspring)
end while
Output: Best individual(s) found
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type of study is crucial to understanding when an algorithm works well on a
certain problem and to helping to choose the suitable heuristic for the instance
we would like to solve. The general nature of evolutionary heuristics and the
No Free Lunch Theorem [87], which proved that no black-box algorithm can
outperform random walk when averaged over all problems, make it impossi-
ble to determine an algorithm that outperforms all the others on any problem
instance; therefore, the algorithm choice should be tailored to the problem.
Furthermore, the study of algorithm complexity has been strictly connected to
design of heuristics, in the way that performance insights lead the building of
efficient algorithms to satisfy the theoretical benchmarks on specific problems.
In particular, this occurs with two different mechanisms. On one hand, com-
plexity studies could give us an idea of how well we have understood a black-box
problem — if there is a large gap between complexity and state-of-the-art per-
formance, this could mean that further research to improve existing algorithm
can be done; on the other hand, complexity measures are a good way to bench-
mark and validate algorithmic choices: comparing complexity restricted to a
class of problems, with unrestricted performances can give precious insights on
which features should be included in efficient algorithms.

A comprehensive review of black-box complexity can be found in [27], which
we mainly followed for this section. A tutorial is also available at [16].

In white-box complexity, we assume that the algorithm has a full access
to the problem data: we know what operations the algorithm has to do, so
performance analysis mainly consists of counting the number of steps until the
algorithm outputs a solution. In the black-box setting, on the other hand,
algorithms can learn about the problem only through evaluations of potential
solution candidates, and thus a rigorous development of the topic was slower: a
new field called black-box complexity has been systematically studied only after
2010. Despite the young age, this kind of studies already gave many insights
on the development of new efficient algorithms and now provide a wide theory
to build on when designing new heuristics.

In our study we will focus on discrete optimization problems and, in particu-
lar, pseudo-boolean functions, i.e. functions f : {0,1}" — R. The analysis will
also regard random algorithms since they are a more complex and therefore less
understood class of algorithms. It is important to note also that deterministic
algorithms are a simple case of randomized algorithms; thus any lower bound
found on randomized black-box complexity applies also to any deterministic
algorithm.

2.4.2 Unrestricted Black-box Complexity

Black-box complexity is a feature of a problem (or a class of problems) and
is referred to an algorithm or a class of algorithms trying to solve that prob-
lem. The most general black-box complexity model is the unrestricted black-box
model [30] since it does not make any assumption about the class of algorithms
it addresses. The only assumption it makes is that the algorithms do not have
any information about the problem other than the fact that the objective func-
tion f comes from some function class F C R®. T represents the objectives
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of the class of problems we would like to study. The unrestricted black-box
algorithms proceed by evaluating, at each iteration, a solution candidate x,
generated according to some probability distribution D, chosen from the query
of previous evaluations. A blueprint of unrestricted black-box algorithms can
be found in Algorithm 6. It is important to note that the choice of the distri-
bution D can be critical: the algorithm could take a significant amount of time
to determine this distribution. Sometimes it is referred to as time-restricted
model, if we consider algorithms where the distribution D® can be decided in
a polynomial number of algebraic steps.

Algorithm 6 General structure of unrestricted randomized black-box algo-
rithms

1: Initialization:

2: Sample z(0) according to some probability distribution D) over S and
query f(z(0)).

3: Optimization:

4: fort=1,2,3,... do

5: Depending on the previously evaluated points

((0), f(2(0))), ..., (z(t = 1), f(2(t = 1)),

choose a probability distribution D(¢) over S and sample z(¢) according to
D).
Query f(x(t)).

7. end for

Note that in the algorithm we are considering just one solution candidate is
sampled at each iteration, but the definition of unrestricted black-box complex-
ity naturally extends to population-based heuristics: that case corresponds to
sampling and querying more points in parallel, ignoring the information from
previous iterations.

We also note that Algorithm 6 does not have termination criteria: since it
is necessary for our definition of black-box complexity, we assume in this study
that the algorithms in analysis can effectively reach the optimum in finite time;
therefore, the first evaluation of an optimal solution is taken as stopping criteria.

To define the unrestricted black-box complexity, we consider an algorithm
A and a function f : S — R. We indicate as T'(A, f) € RU {inf} the number of
function evaluations the algorithm A does until it evaluates an optimal point for
f, and we call it the running time of A for f. If we consider a random algorithm
A, we notice that T'(A, f) is a random variable, depending on the choices made
by the algorithm A. Therefore, we can build a performance measure considering
its expected value E[T'(A, f)]. The formal definition is the following.

Definition 1. Given a black-box algorithm A and a class of functions F = {f :
S — R}, we define the A-black-box complexity of F as

E[T(A,F)] := SflelgE[T(Av )]
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Given a class of algorithms A, we define the A-black-box complexity of F as
E[T(A,F)] := inf E[T'(A,F
[T(A,F)] := inf E[T(A,F)]

Intuitively, the A-black-box complexity of IF is the worst-case expected run-
ning time of A among the functions of F, while the A-black-box complexity of
[F is the best complexity among the algorithms in A, with reference to the prob-
lem instances in F. This definition makes common sense since we assume that
the only thing we know a priori is that f is in a class [F, so we benchmark on
the worst case in the class. However, since we are free to choose the algorithm,
we can choose the best algorithm A among the class A. We then talk about
unrestricted black-box complexity if the class of algorithms A is unrestricted.

Other metrics in addition to the average optimization time were defined
in order to model the quality of a solution after a certain time [71, 50, 23];
however, the average optimization time remains the predominant indicator.

Directly from the definition, we can state that:

Proposition 2. Given F C R®. For every collection A’ of black-box optimiza-
tion algorithms for F, the A’-black-box complexity of F is at least as large as its
unrestricted one.

The proposition is immediate following from the properties of the inf. Nev-
ertheless, the property is particularly relevant since we will often restrict the
complexity analysis to subsets of algorithms.

We also remark that it is not without reason that we give the definition
using a class of problem instances, rather than a single objective function. In
fact, choosing F = {f}, the infimum is realized by the algorithm that queries the
optimum immediately; therefore, the unrestricted complexity is always 1. It is
analogous if we consider a class of functions [ with all the same optimum. More
generally, if F is a class of functions and X C S is such that for all f € F there
exists at least one point z € X, such that x € argmaxg{f}, the unrestricted
complexity of F is (| X|+1)/2. A same argument can lead us to assert that for
every finite set I of functions, the unrestricted black-box complexity is bounded
from above by (|F| 4+ 1)/2.

2.4.3 Bounds on Black-box Complexity

Given Proposition 2, we are particularly interested in providing lower bounds for
unrestricted black-box complexity. In fact, a lower bound for the unrestricted
complexity still holds despite the class of algorithms that we choose. The most
widely used tool for this is the minimaz principle of Yao [88]. The theorem
uses the following definition:

Definition 3. A deterministic black-box algorithm is a randomized black-box
algorithm like the Algorithm 6, where at each time ¢ the probability distribution
D® is a mass distribution of points.

Intuitively, a deterministic black-box algorithm corresponds to a decision
tree.
We can now state the following from [65].
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Theorem 4 (Yao’s minimax principle). Let I be a problem with a finite set
J of input instances (of fized size) that allows a finite set A of deterministic
algorithms. Let p be a probability distribution over J and q be a probability
distribution over A. Then,

inE[T(I,, A)] < E[T(I,A
min E[T(Ip, A)] < max E[T(I, Ag)]
where I, denotes a random input chosen from J according to p, A4 a random
algorithm chosen from A according to q, and T(I, A) denotes the running time
of algorithm A on input I.

The principle is particularly powerful: taking into account the fact that
randomized algorithms can be written as convex combinations of deterministic
algorithms, it affirms that we can bound the expected running time of any
randomized algorithm by the fastest deterministic algorithm A, evaluated on a
random instance, drawn from a probability distribution p. Since it is usually
easier to evaluate the complexity of a deterministic algorithm, the principle
becomes particularly useful, as the following corollary suggests; however, the
principle does not still hold if we consider a restricted class of algorithms.

Corollary 5 (Simple information-theoretic lower bound [30]). Let S be a finite
set. Let F C RS be such that for every s € S there exists a function fs € F for
which the cardinality of fs(S) := {fs(z)|z € S} is bounded by k and for which

s is a unique optimum. The unrestricted black-box complexity of F is at least

[logx(|S)T — 1.

The previous corollary states that if we have a class of functions F, such as
for every possible point s the search space S contains a problem instance f, for
which s is the unique optimum and the value of the objective is bounded by k,
then the black-box complexity of F is bounded from below by a logarithm of
the dimension of the search space S.

An intuitive sketch of the proof of corollary 5 is the following: if we want to
optimize over fs, we need to find s among |S| possibilities. Considering binary
encoding, this means that we need approximately log,(|S|) bits of information.
One query of a search point gives us logy (k) bits of information, since it gives
us one out of k possible f; outcomes. Therefore, the number of queries needed
to find s is logy(|S])/ logy (k) = logy,(|S]). This argument also shows the limit of
the corollary, since it suggests that the bound is well provided if, at each query,
each of the k values for fs are equally probable and therefore the information
given by the evaluation is exactly logy (k). However, normally the information
provided is less since new point queries are usually nearer to points already
queried. As the optimization process proceeds, the function often produces
values that are close to the current best-so-far solution more frequently than
values that are very different, reducing the amount of information gained per
query. Therefore, the optimization process will usually require much more time
than the lower bound provided.

Upper bounds are also important in analysis of black-box complexity: in
fact, a small upper bound for a class of problems F shows that there exists an
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efficient algorithm that solves every problem instance f € F efficiently and can
thus provide valuable insights about possible improvements in the state-of-the-
art.

The simplest upper bound is the expected performance of random sampling
without repetitions, namely

Theorem 6. For every finite set S and every class F C RS, the unrestricted
black-box complexity of F is at most (|S| +1)/2.

Rather than being trivial, this upper bound gains value with reference to
the No Free Lunch Theorem [87], which states that no optimization algorithm
is universally better than random sampling on all possible problems.

2.4.4 Memory-restricted Black-box Complexity

The unrestricted black-box complexity is often too generous with heavy problem-
tailored algorithms, giving a biased complexity measure compared to typical
black-box. One of the reasons is the fact that we are considering heuristics that
can store the whole iteration history, which is often a too strong assumption.
To solve this problem, we can restrict the length of queries to a value p and
thus obtain memory-restricted complexity model. We refer to (u+ X) memory-
restricted black-box model when we consider a model that saves in memory p
values and queries A points at each step. In Chapter 3, we will delve deeper
in two examples of (1 4 1) memory-restricted black-box model, where only one
point is queried and one is saved at each round.

The strong limits of the unrestricted black-box model started to emerge
in [30]. Many bounds derived in this setting are artificially low: that is also
clear from our discussion on the simple information-theoretic lower bound (The-
orem 5). After 2006, thus, the study of unrestricted black-box complexity
seemed to rapidly exhaust its power. However, in 2010, the situation changed
with the introduction of unbiased black-box complezity in [56]. The idea was to
restrict the class of algorithms taken into account in a natural way that covers
the most widely used ones.

The proposed setting considers pseudo-boolean functions, i.e. F C {f :
{0,1}" — R}, and assumes that all solution candidates must be sampled from
distributions which are unbiased, which means that they do not discriminate
between bit positions or bit entries.

We give the following definition, where the concept of k-arity is used, i.e.
the idea that information is gained from k queries.

Definition 7. Let k € N. A k-ary unbiased distribution (D(-|y(V, ... ,y(k)))yu)
is a family of probability distributions over {0,1}" such that for all inputs
yM .. y®) € {0,1}" the following two conditions hold.

(i) Vz,z € {0,1}*: D(z|y®™,...,y*)) = D(x @ 2|y & 2,...,y" & 2),
(ii) Vo € {0,1}* Vo € S,, : D(z|yM,...,y"®) = D(o(x)|o(yD),...,a(y®))

77y<k)
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We refer to the first condition as @-invariance, which indicates the invari-
ance with respect to the xor operator, and to the second as permutation invari-
ance. The two conditions formalize the idea of unbiasedness.

A variation operator creating an offspring by sampling from a k-ary unbiased
distribution is called a k-ary unbiased variation operator.

It is immediate to note that the O-ary unbiased distribution is trivial and
corresponds to the uniform distribution over {0,1}". The l-ary operators, in-
stead, are of particular importance for the study of black-box algorithms and
are referred to as unary unbiased operators or, in the context of evolutionary
computation, as mutation operators. Examples of unary unbiased operators are
the standard bit mutation, used in (u, A) EA and (x4 \) EA, and the random
bit flip used by RLS, both described in Section 2.3.2. Also Simulated Anneal-
ing and Metropolis algorithm, described in Appendix A, are unary unbiased
black-box models.

An important result states that all unary unbiased variation operators are
similar in type. It follows from the definition [20, 24].

Definition 8. Let n € N and r € [0..n] := {0,1,2,...,n}. For every x €
{0,1}™, let flip, be the variation operator that creates an offspring y from x
by selecting r positions i1,. .., in [n] := [0..n] uniformly at random (without
replacement), setting y; := 1 — x;, for i € {i1,...,4,}, and copying y; := z;, for
all other bit positions i € [n] \ {i1,...,ir}.

The characterization of unary unbiased variation operators is as follows.

Proposition 9. For every unary unbiased variation operator (p(:|r))zefo,13n
there exists a family of probability distributions (rpz)zefo,13» on [0..n] such that
for all z,y € {0,1}" the probability p(y|x) that (p(-|z))scqo,13» samples y from
x equals the probability that the routine first samples a random number r from
(Tpa)zefo,1yn and then obtains y by applying flip, to x. On the other hand,
each of these families of distributions (pa)zefo,1y» 0 [0..n] induces a unary
unbiased variation operator.

The k-ary unbiased black-box algorithm is a black-box algorithm that gen-
erates offspring from an k-ary unbiased distribution. In general, it follows the
structure of Algorithm 7.

Algorithm 7 Blueprint of a k-ary unbiased black-box algorithm

1. Initialization: Sample z(0) € {0,1}" uniformly at random and query
7(2(0))

2: Optimization: For t =1,2,3,... do

3:  Depending on (f(z(0)),...,f(x(t—1))), choose up to k indices
i1,...,i) € [0..t — 1] and a k-ary unbiased distribution D(- | y™1), ... 3®*))
where y), ... y*) e {0,1}"

4:  Sample z(t) according to D(- | V), ..., z(®)) and query f(z(t))

Note also that for each k < I, a k-ary unbiased algorithm is also l-ary
unbiased, since we can choose the same indexes more than once.
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The unbiased black-box models solve the problems of the unrestricted model
with individual problem instances F = { f} discussed in Section 2.4.2. Since an
algorithm that queries the optimum in the first step is no longer considered in
this class, the black-box complexity of a single instance is not trivial. This idea
is also at the base of the following useful theorem [56].

Theorem 10. Let f : {0,1}" — R be a function that has a single global
optimum. The unary unbiased black-box complexity of f is Q(nlogn).

The proof of the theorem uses multiplicative drift analysis, which is ex-
plained in Section 2.5.4 and is provided in [56].

One of the problems in black-box optimization is to avoid getting stuck
in local optima. A strategy developed is global sampling: the underlying idea
is to sample with positive probability also solution candidates far away from
the current population. This also models hill-climber algorithms, such as the
already cited (u+A) EA and RLS. Since these are the algorithms we will mainly
study, it is useful to also present the concept of elitist black-box complexity,
which covers algorithms of this type. In general we define as elitist black-box
algorithm every algorithm which follows the structure of Algorithm 8.

Algorithm 8 (u + \) elitist black-box algorithm

1: Initialize: Choose a probability distribution D) over S; sample from it
¢ 2 e S and query f(zM), ..., f(zW)
2: Set X « {(zW, f(=M)),..., (=W, f(z))}
3: fort=1,2,3,... do
Depending only on the multiset X, choose a probability distribution
D® over S

=

5: Sample yM, ...y S and query fyM), ..., f(y™)
6 Set X X U{(yW, FyM)),...,u ™, fyO)}

7: fori=1,...,Ado

8: Select (35 f( )) € X and update X < X \ {(z, f(x))}
9: end for

10: end for

Black-box elitist heuristics are particularly useful, since the optimization
process can strongly benefit from the exploration of points in the search space
with a lower fitness than the current best solution candidates. However, these
benefits come along with a higher theoretical complexity, since Yao’s minimax
principle is no longer applicable. Elitist algorithms, in fact, cannot be writ-
ten as convex combinations of deterministic algorithms [28] and thus different
strategies must be followed.

2.5 Drift Analysis

2.5.1 Basic Definitions

A review of tools for analysis of evolutionary algorithms would not be complete
without a section on drift analysis. This concept is somehow complementary
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to black-box complexity: it aims to provide a framework to derive information
on the expected time of a randomized algorithm through the study of how
the algorithm moves toward the optimum. As black-box optimization tools we
described in the previous section, drift analysis gives important insights on the
performance of black-box algorithms and on the development of new algorithms.
The framework was first developed in [39] and progressively gained popularity.
A complete introduction is given in [58], which we will follow in this section.
The drift analysis framework is quite general and can be seen as a tool to
analyze discrete stochastic processes (X¢)i—0.12,.... While applying it to algo-

yLgLyeee

rithms analysis, we follow these three steps:

1. We identify a quantity Xy, called potential (or also drift function or dis-
tance function). X aims to measure the progress the algorithm has made
after t steps and constitute the stochastic process to analyze;

2. For any X;, we understand the nature of the random variable X; — X; 1,
the one-step change in the distance;

3. We translate the data from step 2 into information about the runtime 7°
of the algorithm, measured in number of steps until the algorithm has
achieved its goal.

Step 1 is often the less trivial, since it requires some insight in the problem to
well define a distance function. In an evolutionary algorithm, a rather natural
choice is usually the fitness of the best individual in the current population,
but one could also find more suitable functions to model the distance from the
optimum. Step 2, on the other hand, is generally more technical, while Step 3
is the one where drift analysis comes in.

In the general setup, we consider a non-negative discrete stochastic process
(Xt)t=0,1,2,.. with a finite state space S C Rx>g, such that 0 € S. The choice
of a finite search space is fine with our setting, which involves algorithms with
bit-string representation. We will call stopping time of 0 of the process the
smallest time ¢ such that X; = 0. Note that we are considering a process where
the target value is 0: in our evolutionary algorithms setting, this is coherent to
the choice of X; as the distance from the optimum rather than the fitness. This
also explains why, in Step 2 of the described framework, we study X; — X¢y1
rather than X;1; — X4.

We then call drift, the quantity d:(s) := E[X; — X¢4+1| X = s], for a certain
state s € S search space. The purpose of drift analysis is to provide tools to
derive bounds on E[T], given bounds on drift for every s € S. Note also that
we will not consider the case P[X; = s] = 0, in which the drift is not defined, as
it is not of practical interest. There are, however, ways to derive drift theorems
which are well defined with reference to the cases of P[X; = s] = 0 [57].

With reference to black-box complexity, it is important to notice the defini-
tion of optimization time used in drift analysis. In this setting, time is referred
to the index of the random variable considered: therefore, it does not necessar-
ily coincide with the number of function evaluations; however, that could often
be the case if the potential is a function of the evaluations made in the iterative
algorithmic process.
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2.5.2 Additive Drift

The first notion of drift analysis is the additional drift, where the different
in expectation of X;y1 — X; is an additive constant. The main result, first
presented in [45, 44], is the following.

Theorem 11 (Additive Drift Theorem). Let (X¢)¢=0.1,2,.. be a sequence of non-
negative random variables with a finite state space S C R>q such that 0 € S.
Let T := inf{t > 0|X; = 0}.

(i) If there exists § > 0 such that for all s € S\ {0} and for allt >0,
At(S) = E[Xt — Xt+1|Xt = S] 2 5,
then

E[Xo]
s

(ii) If there exists 6 > 0 such that for all s € S\ {0} and for allt >0,

E[T] <

At(s) = E[Xt — Xt+1|Xt = 8] < 5,

then
E[Xo)

B[T] > =

The theorem gives an upper bound for the expected time if we can give a
constant lower bound for the drift at each step and at each point different from
the optimum, while it gives a lower bound if we can provide a constant upper
bound for the drift. The proof of the theorem is provided in Appendix B.1.

2.5.3 Variable Drift

A problem of the additive drift theorem is that it requires us to find a potential
function that has a constant that bounds the drift: this can eventually be
rather hard. A useful theorem that overcomes this problem is variable drift
theorem [51, 77]:

Theorem 12 (Variable Drift Theorem). Let (Xi)i>0 be a sequence of non-
negative random variables with a finite state space S C R>q such that 0 € S.
Let smin := min(S \ {0}), let T := inf{t > 0 | X; = 0}, and fort > 0 and
s €S, let Ay(s) :=E[Xy— Xiy1 | Xi = s]. If there exists an increasing function
h: Ry — Ry such that for all s € S\ {0} and allt >0,

Ai(s) > h(s),

then

S Smin 1
E[T] < —min +]E[/ da],
e Rl VA TED

where the expectation in the latter term is over the random choice of Xo.
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The variable drift theorem provides us with a more general framework to
determine bounds on the expected time. It requires the drift to be bounded from
the low by an increasing function: this is a reasonable assumption, since we can
expect that as the algorithm progresses towards s = 0 and h(s) becomes smaller,
also the drift d;(s) becomes smaller. Given this hypothesis, the expected time is
then bounded by a term which depends on h and thus on how fast you progress.
The proof of the theorem is provided in Appendix B.1.

2.5.4 Multiplicative Drift

A very important case of variable drift is multiplicative drift. It corresponds to
the case where the drift is proportional to the potential, i.e. h(s) = s for some
J. It was introduced in [22, 21] and is widely used in the analysis of evolutionary
algorithms. It is stated as follows.

Theorem 13 (Multiplicative Drift Theorem). Let (Xt)¢>0 be a sequence of non-
negative random variables with a finite state space S C R>q such that 0 € S.
Let spin := min(S\{0}), let T :=inf{t > 0| X; =0}, and fort >0 and s € S,
let Ay(s) == E[X; — Xi1 | X¢ = s|. Suppose that there exists 6 > 0 such that
for all s € S\ {0} and allt > 0, the drift is

Ay(s) > ds.

Then
E[log(Xo/smin)]
5 .

As we can see, the derived bound on E[T] is simpler than the one provided
by the general variable drift theorem. In this case, the runtime is controlled
by a term that is inversely proportional to the value of . The theorem follows
from Theorem 12 with h(s) = ds.

Some results on lower bounds drift theorems have also been developed: in
particular, we state the multiplicative drift theorem for lower bounds, from [86,
55] since it is used in the proof of Corollary 5.

Theorem 14 (Multiplicative Drift Theorem, lower bound). Let (Xt):>0 be a
sequence of non-negative random variables with a finite state space S C Rx>g
such that 0 € S, and with associated filtration Fy. Let Smin := min(S \ {0}),
and let T := inf{t > 0 | X; = 0}. Suppose there are two constants 0 < 3,6 <1
such that for all s € S\ {0} and all t > 0 the following conditions hold:

(1) Xeg1 < Xy;

E[T] <1+

.. 0
(ii) Pr(X; — Xep1 > BX; | T4, X = 8] < pprarsy

(iit) E[X; — Xig1 | Fo, Xy = s] < 6s.
Then,

E[T] > 1-p ' 1+ E[log(Xo/Smin)] '
14+ 0
As we can see, this lower bound theorem is less intuitive and more complex
also to verify.
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2.6 Parameter Control

Evolutionary algorithms and many black-box iterative heuristics are parametrized
algorithms. That means that the search behavior depends on the choice of pa-
rameters. The study of black-box complexity and drift analysis, and more
generally of algorithm performance, is strongly connected to the study of pa-
rameter influence on algorithms behavior: both in terms of benchmarking pa-
rameter choices and in terms of designing new algorithms. In fact, in many
cases, the practical motivation behind complexity studies is to provide insights
about how an algorithm could be improved by a new parameter choice rule.
That is also the case of our study.

2.6.1 Parameter Dependence

The so-referred parameter selection problem, known also algorithm configura-
tion, has been strongly studied: a recent summary can be found at [19] and
we will follow it for this section. Parameter dependence is a particular relevant
task also because of its difficulties which arise for several reasons:

o Complezity of performance prediction: predict how the performance of an
algorithm depends on the chosen parameter values is a very challenging
problem. The tools exposed in the previous sections are useful to give
theoretical insights about how different algorithmic choices can influence
performances, but are not always easily applicable.

e Problem- and instance-dependence: since no globally good parameter
choice exist, suitable parameter values can differ between different prob-
lems or even instances of the same problem.

o State-dependence: the best parameter values can change during the opti-
mization process.

To overcome these challenges, two main approaches have been adopted:

e Parameter tuning: this process aims to identify parameters which are
globally suitable for the optimization process, trying to address the problem-
and instance-dependence. In empirical work, this means conducting a
series of initial experiments to identify good parameter choices that can
be used in the algorithm execution, while in theoretical work this usually
consists of the choice of parameters that minimize performance bounds.
However, this approach usually provides a static policy and thus does not
help in addressing the state-dependence challenge.

o Parameter Control: although more challenging, parameter control ad-
dresses the problem of state-dependence, using a non-static choice of pa-
rameters. The optimal configuration is adjusted on the fly, taking advan-
tage of the evolution of the optimization process.
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This taxonomy has been commonly adopted in the field from the work [31].

It is intuitively to understand that parameter control is a much more promis-
ing approach and has become in the last years the leading solution for black-
box optimization problems. In [19] the following classification of the techniques
adopted to address a dynamic parameter choice is proposed:

o State-dependent parameter control: those are mechanisms that depend
only on the current state of the search process, e.g. the current best fitness
or the current population, and do not take into account the history of the
algorithm. Examples of this are time-dependent parameter policies, as the
one used in simulated annealing, or fitness-dependent policies, widespread
in the class of evolutionary computing.

o Success-based parameter control: those are mechanisms that change the
parameters from one iteration to the next. The current parameter is
determined by the success of the previous configuration. These are mech-
anisms that take into account the previous iteration for the choice of the
parameters of the following steps.

o Learning-inspired parameter control: those schemes are similar to the
previous ones but tend to exploit a longer history than just one iteration;
several of these approaches come from machine learning or reinforcement
learning.

o Endogenous (or self-adaptive) parameter control: this category involves
all the cases where parameters are encoded within the individuals of the
population and evolve alongside the solution candidates. This is a par-
ticularly elegant approach, since there is no external or global policy but
the parameters are carried by the individuals. In evolutionary computa-
tion, this means that the parameters evolve within the iterative process
together with the individuals. As expected, this approach is particularly
difficult to design and therefore not well understood in empirical applica-
tion or in theoretical works.

e Hyper-heuristics: this is a higher-level optimization framework designed
to automatically generate or select heuristics to solve a specific problem
and thus automatize the entire optimization process, involving also the
choice of the suitable low-level heuristic.

Since results on theory of parameter control are more algorithm and problem-
specific, we will delve deeper into the topic in the following chapters when our
analysis will take into account more specific example.

2.6.2 Dynamic Algorithm Configuration

Recently, the parameter selection problem has gained particular importance
within the raise of Al, both because machine learning problems subsume the
use of parameter-based optimization algorithm [48, 72], and because the rise



CHAPTER 2. BLACK-BOX OPTIMIZATION 27

of machine learning suggested innovative approaches to address the problem of
selecting the best parameter through learning-inspired mechanisms [6].

In particular, this approach gave birth to a new framework called Dynamic
Algorithm Configuration. It was first proposed in [6] and then gained popularity
in the following years [7, 13]. In [1] a complete review of the state-of-the-art
and a formal definition of the field can be found and it is illustrated in this
section.

The Algorithm Configuration problem can be stated as the process of de-
termining a policy to set algorithm parameters with the aim of maximizing
performance across a problem instance distribution. In the static setting, the
process corresponds to the already named parameter tuning: the parameter
configuration is fixed prior to execution. We have the following setting: a
target algorithm A, with parameters p1,po, ..., pr that we would like to con-
figure. This consists of finding a suitable value in the configuration space
O C ©1 XOy X - -+ X O which minimizes a given cost metric c. We also consider
i € I the instances of algorithm A and D, a distribution of the instances of the
target problem.

In the classical, or per-distribution (AC), approach we would like to mini-
mize the cost metric over all possible instances, along the distribution D. We
therefore obtain the following optimization problem.

Definition 15. Given (4,0, D, ¢):
e A target algorithm A with configuration space ©.
o A distribution D over the target problem instances with domain 1.

o A cost metric ¢: © x I — R that assesses the cost of using A with 6§ € ©
oniée€l.

Find a 6* € arg mingce E;p [c(0,7)].

Note that in this definition, A,D and ¢ are usually not given in closed
form: c is itself normally a black-box procedure that evaluates A over a specific
configuration of parameters 6.

A better result can be obtained with per-instance algorithm configuration
(PIAC), which consists in making the choice of § depending on the specific
problem instance ¢ € I. It is defined by the following optimization problem.

Definition 16. Given (A,0, D, ¥, ¢):
e A target algorithm A with configuration space ©.
o A distribution D over target problem instances with domain 1.

e A space of per-instance configuration policies ¢ € ¥ with ¢ : I — © that
choose a configuration 6 € © for each instance ¢ € I.

o A cost metric ¢: ¥ x I — R assessing the cost of using A with ¢ € ¥ on
1el.
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Find a ¢* € argmingcw Ejwp [c(2,1)].

We note that AC is a special case of PIAC when the configuration policies
are chosen constant with respect to the instances, i.e. when U = {9[i(i) =
¥(i'), Vi, i’ € I},

In Dynamic Algorithm Configuration (DAC), the aim is to optimally vary
f € © while executing A. The definition of DAC as an optimization problem
analogously as how we defined AC is then the following.

Definition 17. Given (4,0, D,1II, ¢):

o A step-wise reconfigurable target algorithm A with configuration space

0.
e A distribution D over target problem instances with domain 1.

e A space of dynamic configuration policies w € Il with 7 : .S x I — © that
choose a configuration 6 € O for each instance ¢ € I and state s € S of A.

e A cost metric ¢: II x I — R assessing the cost of using 7 € [T on i € I.
Find a 7* € argmingcr Eiwp [c(, 7)].

Note that DAC is a further generalization of PIAC where the elements in ¥
also depend on the state s € 8, i.e. ¥ C {n|n(i,s) = n(i,s"),Vs, s € S,Vi € I'}

In order for it to be possible to update the parameters on-the-fly, the al-
gorithm must be of a specific iterative form that can be summarized in Al-
gorithm 9. Essentially, the algorithm must proceed iteratively, and at each
iteration there must be a point where the parameter configuration 6 could be
updated. It is evident that an evolutionary algorithm satisfies this scheme.

Algorithm 9 Step-wise execution of a dynamically configured target algorithm
A

Input: Dynamic configuration policy 7 € II; target problem instance ¢ €
s 4— init(i)
while —is_final(s,i) do
0« m(s,1)
s < step(s,i,0)
end while
return s
Output: Solution for i found by A (following )

DAC problems have often been addressed manually: dynamic parameter
policies have been determined by humans and not in an automatic and data-
driven fashion. However, recent developments in the field have seen the emerg-
ing of two different approaches: DAC by Reinforcement Learning (RL) and
DAC by optimization.

In Reinforcement Learning [80], an agent interacts in an environment trying
to optimize some kind of feedback. The mathematical framework is the Markov
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Decision Process (MDP) and is explained more thoroughly in the Appendix C.
The RL agent takes actions a € A, observes a transition T from the current
state s € S of the environment to 7'(s,a) € S and receives a reward R(s,a) € R.
The aim of the RL agent is to maximize the expected future reward. In the DAC
setting, 7" and R are in the form of a black-box. In particular, in this case the
environment consists of an algorithm A solving an instance ¢ € I. The current
state of the environment is s = s(i,s’) depends on the state of the algorithm
s’ and the initial instance 4, which depends on a distribution D. The action
of the RL agent corresponds to the choice of a parameter configuration 8 € ©.
The reward corresponds to a performance cost of the step-wise execution of the
algorithm.

Several approaches have been tried for the development of a DAC RL
agent [54, 74, 5]. Modern solutions have been adopted recently, among them in
particular the use of deep reinforcement learning [78, 7|. To overcome the fact
that RL methods are not instance-aware and do not choose their starting state,
in [6] it has been proposed to model DAC as a contextual MDP (cMDP), i.e.
collection of MDPs M(i), one for each instance, with a common action space
A and a state space S, but instance-based transition functions T; and reward
functions R;. The contextual RL agent can directly exploit specific knowledge
about the instance we are considering.

DAC by optimization, on the other hand, formulates the configuration prob-
lem as non-sequential optimization problem. Given a search space II for the
policy m, the aim is to solve the following optimization problem:

find 7* € argmin E;  p[c(m, )]
mell

The different methods can then be developed depending on the represen-
tation of II and the use of information from the objective function f(7) =

E;wple(m, i)].



Chapter 3

Complexity Results for
LeadingOnes and OneMax

In the theory of black-box randomized heuristics, it is common opinion to con-
sider certain problems and algorithms as fundamental benchmarks for theoret-
ical studies. In particular, ONEMAX is often referred to as the Drosophila of
combinatorial problems, and it is widely used to benchmark evolutionary algo-
rithms. The classic version takes as objective function f the number of ones in
a bit string x, i.e. > 1" | x;. Since, as we observed in section 2.4, single-instances
problems lead to trivial black-box unrestricted complexity, we can generalize
the ONEMAX problem as in [27]:

Definition 18. For all n € N and all z € {0,1}", let
OM. : {0,1}" — [n], x+— OM,(z)=|{i € [n] | z; = 2i}|,

be the function that assigns to each length-n bit string  the number of bits in
which = and z agree. Being the unique optimum of OM,, the string z is called
its target string.

We refer to ONEMAX,,, or simply ONEMAX := {OM,, | z € {0,1}"} as the
set of all (generalized) ONEMAX functions.

It is easy to note that the choice of z = (1,1,...,1) corresponds to the
classic problem described before which we will denote by OM. It is also easy
to see that for every z € {0,1}" the fitness landscape of OM, is isomorphic to
that of OM.

If ONEMAX is the Drosophila of combinatorial problems, then we can define
LEADINGONES as the lab mouse, used for benchmark algorithms but dealing
with a more nuanced fitness landscape. It is probably the second-most studied
function in the field and it complements ONEMAX in defining a problem where
bits are no longer evaluated independently from their position. In fact, the
fitness function of the classic instance corresponds to maximizing the longest
prefix of ones in a bit string, i.e. LO(x) := max{i € [0..n]|Vj € [i] : z; = 1}.
Also in this case, we can write a generalization of the problem to deal with a
non-trivial analysis [27]:

30
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Definition 19. For all n € N and z € {0,1}", let
LO. :{0,1}" = [n], 2z max{i € [0.n]|Vj € [i]:z; =z},

be the length of the maximal joint prefix of  and z. Let LEADINGONES), :=
{LO, | z € {0,1}"}.
For z € {0,1}" and o € S,, permutation of n elemnts, let
LO.s : {0,1}" = [n], =+ max{i € [0.n] | V] € [i] : 25(j) = 20(j)}>
be the maximal joint prefix of x and z with respect to . The set LEADINGONES,,
is the collection of all such functions; i.e.,

LEADINGONES,, := {LO,, | z € {0,1}",0 € S, }.

Our study will thus refer to ONEMAX and LEADINGONES as benchmark for
parameter control in black-box randomized heuristics.

Continuing with our metaphor, we can say that, in terms of algorithms, (1+
1)EA is without doubt the corresponding Drosophila of black-box randomized
heuristics, while RLS, the lab rat of evolutionary computation, with a more
nuanced mutation operator which does not treat each bit independently of the
position. We already described the two heuristics in Section 2.3.2.

In this chapter, therefore, we will provide the main results on complexity
and parameter control for RLS and (141) EA on LEADINGONES and ONEMAX,
with a particular focus on RLS on LEADINGONES, which is the most complex
and interesting case.

3.1 OneMax and LeadingOnes Complexity

3.1.1 Unrestricted Complexity

We can start studying the most general black-box complexity model: the un-
restricted one. It is clear from theorem 6, that the unrestricted black-box
complexity of ONEMAX is at most (2" + 1)/2, however far better bounds have
been derived. The unrestricted complexity of ONEMAX has indeed been stud-
ied since the 1960s, and therefore before the notion of black-box computation
came out. It has been studied firstly by Erdés and Rényi [32] related to a
question about coin-weighing problems. They were the first to prove a result
that we can translate as the unrestricted black-box complexity of ONEMAX;
several similar bounds have been proved in the following years and then again
in the early 2000s. In particular, we can trace from [32, 60, 59, 12] the following
theorem.

Theorem 20 (Unrestricted black-box complexity of ONEMAX). The unre-
stricted black-box complexity of ONEMAX is at least (1 —o(1))n/logy(n) and at
most (14 o(1))2n/logy(n). Thus, ©(n/logn).

The proof of the lower bound follows Yao’s minimax principle, applied to
ONEMAX,, with uniform distribution. The argument is similar to the one used
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to intuitively prove the corollary 5: with each function evaluation, we obtain
roughly logy(n + 1) bits of information as value of the objective, i.e. a number
in between 0 and n. Since we need n bits of information to obtain the opti-
mal string, we have to perform at least n/logy(n + 1) iterations to get to the
optimum.

It is interesting to give a sketch also of the upper bound proof; in [32], it is
proven that if you sample O(n/logn) bit strings uniformly at random from the
solution space 0, 1", you can find the target string with high probability. There-
fore, an asymptotically optimal algorithm for ONEMAX consists in randomly
sampling O(n/logn) bit strings independently and uniformly [25].

The unrestricted black-box complexity is well understood also for LEADIN-
GONES and its generalizations. In particular, for LEADINGONES), we have the
following result from [30]:

Theorem 21. The unrestricted black-box complexity of the set LEADINGONES],
isn/2+ o(n).

The result is quite intuitive: we can consider an algorithm that, knowing
that the first k bits are correct, proceeds by flipping the (k + 1) — th bit and
queries the new string. It continues this process of flipping and querying until
it finds the optimal solution. On average, this requires around n/2 queries
because, for a random bit string, roughly half of the bits are expected to be
correct at random.

We also have a result for LEADINGONES,,, taken from [2]:

Theorem 22. The unrestricted black-box complexity of LEADINGONES,, is ©(nloglogn).

The proof is quite complex: for the lower bound, it uses Yao’s minimax
principle applied to the uniform distribution over the instances LO, , with a
uniform distribution over the instances z,(;) = (i mod 2),i =1,...,n. Once
o is determined, we can reduce the problem to the case of Theorem 22, so
we need around n/2 evaluations on average to find the optimum. Therefore,
complexity is determined by the determination of the target permutation o and
the expected number of evaluations to find it is determined by drift analysis.

3.1.2 Memory-Restricted Complexity

In our analysis, it is also important to talk about the (1+ 1) memory-restricted
black-box complexity model. In fact, RLS and (14 1) EA are part of this class
since they exploit only the best solution so far and, therefore, have memory of
queries only of length 1.

A complexity result exists for ONEMAX and is stated in [17]:

Theorem 23. The (1+1) memory-restricted black-box complezity of ONEMAX
is ©(n/logn).

The idea behind the theorem is to divide the string into y/n substrings of
length \/n and optimize one substring at a time through the random sampling
strategy from [32] we have already mentioned. Then it is proven that this
requires O(n/logn) evaluations.
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It is important to note that the complexity is the same as the unrestricted
one, which means that for solving ONEMAX it is not really asymptotically
beneficial in terms of complexity to have more memory than 1 evaluation; this
further motivates our choice of studying (1 + 1) EA and RLS.

3.1.3 Unary Unbiased Black-box Complexity

Another important complexity result for our study is the unary unbiased, since
this bound is attained by both RLS and (1 + 1) EA. For ONEMAX, the Theo-
rem 10 can be applied and thus it is immediate to state that the unary unbiased
complexity of ONEMAX is greater than O(nlogn). This bound is better derived
in [20] where the following theorem is stated:

Theorem 24. The unary unbiased black-box complexity of ONEMAXis nlog(n)—
cn +o(n) for a constant ¢ between 0.2539 and 0.2665.

Also for LEADINGONES, Theorem 10 gives a lower bound for unary unbiased
black-box complexity of O(nlogn). However, problem-specific arguments lead
to a better bound [56]:

Theorem 25. The unary unbiased black-box complexity of LEADINGONES is
O(n?).

The theorem is proved through additive drift. It is defined as a potential
function a map from the time ¢ to the largest number of initial ones and initial
zeros in the query z(), ..., z(®) and shown the fact that a potential of k > n/2
cannot increase in one iteration by more than an additive term 4/(k + 1), in
expectation.

We note that both these complexity bounds give us important information
because they are higher than the unrestricted ones, thus we can estimate better
the performance time for RLS and (1 + 1) EA that attain to the class of unary
unbiased algorithms.

3.1.4 Elitist Black-box Complexity

Lastly, it is important to talk about the results on elitist black-box complexity,
since this notion includes all hill-climbing algorithms, such as RLS and (1 +
1) EA.

However, for ONEMAX, the problem of (1+1) elitist black-box complexity
remains unsolved. The nearest result gives complexity results with a certain
probability and is stated in [29]:

Theorem 26. For every constant 0 < € < 1, there exists a (1+1) elitist black-
boz algorithm that finds the optimum of any ONEMAX instance in time O(n)
with probability at least 1 — e, and this running time is asymptotically optimal.

For LEADINGONES, the (1 + 1) elitist complexity has been shown in [28].

Theorem 27. The (1 + 1) elitist black-box complexity of LEADINGONES is
O(n?).
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The proof cannot take advantage of Yao’s minimax principle directly since
elitist algorithms can not be written as a convex combination of deterministic
algorithms, as already discussed. Nevertheless, extending the class of elitist
algorithms to a superset in which every randomized algorithm can be expressed
as a probability distribution over deterministic heuristics, one can still find use
of Yao’s principle. The lower bound for this superset trivially extends to all
elitist black-box algorithms.

It is interesting to make some last considerations on this case: for LEADIN-
GONES, the complexity is the same as the unary unbiased one that we can thus
take as reference for RLS and (1+1) EA; for ONEMAX, the (hypothetical) com-
plexity of ©(n) would be lower than ©(nlogn), which will thus be the reference
for RLS and (1 + 1) EA.

3.1.5 Drift Analysis for OneMax and LeadingOnes

A more comprehensive overview of ONEMAX and LEADINGONES and of the
behavior of RLS and (1+ 1) EA can be completed with the drift analysis tools
presented in Section 2.5. This type of analysis is complementary to black-box
complexity and is indeed part of the proof of some complexity bounds. However,
a more detailed explanation can give interesting insights on how the algorithms
work beyond the simple complexity result, since drift analysis, as we already
noted, studies how the algorithm proceeds to understand the execution time of
an algorithm.

Several interesting results exist for (1 4+ 1) EA and RLS on ONEMAX and
LEADINGONES that make use of drift analysis: the first deals with (14+1)EA
on linear pseudo-boolean objective functions, i.e. f : {0,1}" — R,z —
Yo, wiwi, where w; are constant. It is easy to see that, taking w; = 1V,
f corresponds to the ONEMAX function. We consider (1 + 1)EA with con-
stant mutation rate p = 1/n, and choose as potential function the fitness,
X; = f(2®). This yields to the lower bound for multiplicative drift

)

since (1 + 1)EA has a constant probability 1/n of flipping exactly one bit
at each of the s iterations.

Therefore, from the multiplicative drift theorem (Theorem 13) we have the
following.

&@zgg

Theorem 28. There exists a constant § > 0, such that

1+ E[log(Xo)/wn])
0

Mﬂgo(

which turns out to be O(nlogn) for ONEMAX substituting w, = 1, which
is tight as we already observed in the previous section.

It is important to note that 7', the random variable that denotes time, effec-
tively represents the number of evaluations and, thus, the number of iterations
of the algorithm. Therefore, it corresponds to the time measurement we take
for considerations about complexity.
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Also, a result for RLS on ONEMAX that makes use of drift analysis exists.
To prove it, we exploit the fact that one round of one-bit RLS corresponds to
a coupon collector process (CCP). The coupon collector process is a stochastic
process: the setting is that we have n types of coupons and a collector wants
to get at least one coupon of each type. However, the coupons are sold in
opaque wrappings, so the collector does not know which type of coupon it will
receive. We assume that each coupon has the same frequency 1/n. Through
drift analysis, we answer the question of how many coupons does one have to
buy to possess one for each type. The analogy with RLS is clear: having the
coupon ¢ out of n corresponds to having a 1 in position ¢ of a bit string of length
n.

We denote as X; the number of coupons after ¢ purchases, thus the ONEMAX
fitness in our analogy. For X; = s, the probability of obtaining a new type with
the next purchase is s/n. In this case, X; decreases by one and thus the drift is
Ay(s) = s/n. We can thus apply the variable drift theorem with $,,,;, = 1 and
h(s) = s/n and obtain the following.

Theorem 29. Let T be the number of RLS evaluations with radius 1 needed to
solve ONEMAX, then

E[T] < nlogn+n

Multiplicative drift can also be applied to provide a lower bound for RLS on
ONEMAX. We take the same X; as in the CCP; since it decreases by at most
1, we choose {(s) :== s — 1 and h(s) := (s + 1)/n. Therefore, we obtain

Theorem 30. A lower bound for the expected optimization time of ONEMAX
using RLS with radius 1 is

Smin Xoo 1 o
BIT] > 5 E[/smm el =

1 Xo
2/711L [/1 o+1 d

= g +n - Eflog(Xo + 1) —log(2)] >

> nlogn — O(n)

As we can see, drift analysis gives us insight into how the value of ©(nlogn)
complexity is obtained for ONEMAX. It also says us that RLS and (1 + 1) EA
are optimal representative of the class of unary unbiased black-box algorithms.

The last result which makes use of drift analysis is the upper bound of the
optimization time of RLS on LEADINGONES. It is an application of additive
drift: we take as potential the fitness distance from the optimum X; = n —
f(z®). In this case, we can apply the additive drift and obtain the following
result.

Theorem 31. Let T denote the number of RLS evaluations with radius 1 to
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optimize LEADINGONES. It follows that

(n—21)n < E[T] < n?
The proof is more elaborated and consists in bounding the drift and then
applying the additive drift theorem. The key observation consists in calling &
the event improvement of the k + 1-th bit and write the drift as

Ay(k) = E[X; — Xpi1| X, = k] =
= P[EJE[X; — Xpi1| X, = &, &] =

1
= EE[Xt — Xt+1|Xt = k, 8]

and then bound E[X; — X;11|X; = k, €] in between 1 and 2.

Also in the case of RLS for LEADINGONES, drift analysis allows us to better
understand the complexity bounds. We observe indeed why the complexity
of LEADINGONESis ©(n?) for unary unbiased algorithms and that RLS is an
optimal representative of the class.

3.2 Parameter Control for RLS and (1 + 1) EA

3.2.1 Motivations

In the previous section, we discussed theoretical results for RLS and (14 1) EA
on ONEMAX and LEADINGONES. The results we stated are referred to black-
box complexity and drift analysis and generally give good asymptotic results,
involving © and big-Oh bounds. However, we are now interested in seeing
how and in which sense an optimal configuration of the algorithm could impact
on performances; we already observed through drift analysis that RLS and
(1 + 1) EA are asymptotically optimal for ONEMAX and LEADINGONES, as
they realize the complexity bounds. We summarize the asymptotic results in
Table 3.1.

Algorithm Problem Asymptotic bound

(1+1) EA ONEMAX O(nlogn)
RLS ONEMAX O(nlogn)

(1+1) EA LEADINGONES O(n?)
RLS LEADINGONES O(n?)

Table 3.1: Summary of asymptotic results

Building on this, we are interested in studying the influence of parameter
control and algorithmic choices. In particular, since we have tight asymptotic
bounds, it is interesting to analyze if better asymptotic constants can be found
and if different algorithmic choices could improve the behavior towards the
solution, e.g. speeding up the earliest phases of the optimization process. This is
also the opportunity to understand in concrete cases the influence of parameter
choice we have already discussed in Section 2.6.
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So far the results obtained are referred to a standard use of static param-
eters, in particular the standard choices are 1 for the radius of RLS and 1/n
as mutation rate for (1 + 1) EA. For RLS the choice to fix the radius at 1 is
natural: a different static parameter will make the algorithm get stuck when
encountering a solution of fitness n — 1; flipping exactly one bit at a time, on
the other hand, guarantees convergence regardless of the starting individual.

For (14 1) EA, on the other hand, the choice of 1/n seems less motivated:
it is indeed the choice analogous to running RLS with radius 1. With radius 1,
in fact, each bit has a 1/n probability of being flipped at each RLS iteration.
However, any choice of mutation rate p € (0,1) would guarantee convergence
for LEADINGONES and for ONEMAX, so a better parameter p may exist.

To provide a motivated choice of parameters, we follow some theoretical
insights: a precise study of dependence of the expected runtime from the pa-
rameters can be exploited to find the best configuration through an optimization
process. In this section, we present the main results for the control of the radius
of RLS and the mutation rate of (14 1) EA on LEADINGONES and ONEMAX.

3.2.2 Static Parameter Policies for RLS and (1 + 1) EA

An exact expectation runtime for (1+1) EA optimizing ONEMAX, is not actu-
ally known. However, in [35], a rather precise study of the expected optimiza-
tion time with mutation rate p = ¢/n was carried out, providing some tight
results. The expected runtime can be summarized in the following;:

Theorem 32. The runtime estimate of (14+1) EA with mutation rate p = ¢/n,
with ¢ € (0,n), is

Cc

E[T] = %nln(n) +O(n)

The proof is particularly elaborated and requires deep tools from probability
theory, and is provided it in [86].

However, the result is of direct importance because it allows us to find the
optimal static mutation rate for (14 1) EA on ONEMAX; by optimizing e/c
for ¢, we easily find that the minimum expected time is given by ¢ = 1, which
indeed motivates the standard static choice of p = 1/n. A simpler proof with a
detailed analysis of the bound for the expected time in the case ¢ = 1 has been
provided in [49] and restates the tight result we reported in Theorem 24.

The study of RLS on ONEMAX can indeed lead to an exact result, as stated
in [18] and [15]. This result makes use of the fact, already observed in Sec-
tion 3.1.5, that RLS on ONEMAX with radius 1 is equivalent to a coupon
collector process in which each type of coupon is initially present with prob-
ability 1/2. The runtime of the coupon collector process with n — k coupon
out of n initially present is distributed as Y.¥_; Geom(i/n), where all random
variables are intended to be independent. We then call X the random variable
which indicates the number of initial ones; it is easy to observe that it follows a
binomial distribution Bin(n,1/2). The exact distribution of T is therefore the
following:
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Theorem 33. Let T be the number of iterations taken by RLS with radius 1
to sample the optimum of the ONEMAX function. Then

n—1

T~ Z 1ix<y - Geom(
i=0

n—1

)

n

where X ~ Bin(n,1/2) and X and the geometric distributions are assumed to
be independent.

By calculating the expected value of the previous expression, we obtain that
the expected runtime is

ST SIS S S
= =ny —=:nH,
ion—k il

where H,,, the n-th harmonic number. H,, can be approximated asymptot-
ically by log(n) + v + O(1/n), where ~ is the Euler-Mascheroni constant, and
in coherence with the asymptotic result of ONEMAX complexity of ©(nlogn).

Some interesting results easier to interpret are obtained from the precise
study of expected runtime on LEADINGONES. For (1+1) EA on LEADINGONES
an exact analysis is performed in [8]. The paper is particularly important, since
it contains indeed the first precise analysis which does not rely on asymptotic
bounds. The result for static parameters is the following.

Theorem 34. The expected optimization time of (1+1) EA with fized mutation
rate p for LEADINGONES is

BIT) = 55101 - )" = (L=p)

The theorem is derived in Appendix B.2.

The result is particularly powerful, as it allows us to determine the optimal
parameter choice through optimization: we just need to find the value of p which
minimizes E[T]. Therefore, we calculate the derivative of E[T] with respect to
p and pose it equal to zero:

) = (=D = (=) g m - p) T =0 (3)

We cannot solve this equation analytically, but we can derive numerically
that the optimal parameter is p ~ 1.5936/n which leads to an optimization
time of E[T] ~ 0.77201n2, for n sufficiently large. In this way, we can also
compute the expected runtime when choosing p = 1/n, which corresponds to
E[T] ~ 0.85914n2. This means that the standard choice is not optimal and that
even with a static parameter choice, we can obtain a performance improvement
of 16.1%.

The previous result is straightforward and effective. However, a more gen-
eral analysis was conducted in [15]: it provides exact results for all (1+1) al-
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gorithms on LEADINGONES function. It is particularly useful because it holds
not only for (1 + 1) EA but also for RLS:

Theorem 35. Let T' be the first time a (1+1) algorithm generates the optimum
of the LEADINGONES function. Then

n—1

T ~ Z Xi - Geom(q;)
=0

where Xy, ..., X,—1 are uniformly distributed binary random variables, the X;
and Geom(q;) are mutually independent, and for all i € [0..n — 1] we denote by
q; the probability that the mutation operator generates from a search points of
fitness exactly © a strictly better search point.

Consequently,

where we read 1/p; = oo if p; = 0.

The key idea of the proof is to observe that the waiting time for an improve-
ment of a solution of fitness ¢ corresponds in the time to flip the ¢+ 1-th bit and
is thus modeled by a geometric distribution with parameter the probability g¢;
of flipping the ¢ + 1-th bit. The arguments proceeds then by induction on the
distance n — ¢ from the optimum. Details are provided in Appendix B.2.

For (1 + 1) EA we obtain again the previous result: in this case, if p is the
mutation rate the value of ¢; corresponds to the probability of flipping more
zeros than ones: it depends on p and is ¢;(p) = (1 — p)’p which yields to an
expected time of E[T] = 1/2-p*((1 — p)!™™ — (1 — p)). For the standard choice
p = 1/n, this is E[T] ~ 0.86n2, for p ~ 1.59/n, E[T] ~ 0.77n%, which correspond
to the values previously obtained.

For RLS, on the other hand, with the standard parameter choice r = 1, the
value of ¢; id 1/n and thus E[T] = 0.5n>.

3.2.3 Dynamic Parameter Policies for RLS and (1 + 1) EA

However, it is intuitive to notice that both (141) EA and RLS will benefit from a
dynamic choice of parameters. In particular, this could be beneficial in the early
stages of the optimization, since the algorithm would take advantage of a more
"'risky" attitude to better explore the search space and only later exploit a small
neighborhood of the best solution so far. Studies conducted so-far associate the
control of this behavior with the distance from the optimum measured in fitness
terms: the idea behind is that as we approach the optimal solution, we would not
like to look for the solution too far from the best candidate so far. Theoretical-
inspired policies have thus been developed that suggest different parameter
choices depending on the fitness value of the current solution candidate.

For (1 + 1) EA on ONEMAX the optimal adaptive mutation rate can be
directly derived following a result similar to Theorem 34, also reported in [8].
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The execution time is now written as a function of n parameters p1, ..., pn, each
of which represents the mutation rate used by the algorithm dependent on the
fitness of the current individual x, i.e. if x has fitness f(x), the algorithm will
operate on the solution with mutation rate ps(,. Following a similar argument
used to find the optimal fixed mutation rate in 3.1, we obtain the following.

Theorem 36. Let f(x) be the fitness of the current individual, then the optimal

mutation rate is 1

PI@) = fa)y+1
Through these choices, we obtain almost matching upper and lower bounds
for the expected optimization time:

Theorem 37. Let pyy = 1/(f(z) + 1), the the expected optimization time of
the adaptive (1 + 1) EA is bounded as follows:

ZnQ — Zn <E[T] < ZnQ + Zn

Therefore, we obtain a better result than the one obtained with a fixed
mutation rate, with an improvement of approximately 12.0% to the optimal
fixed mutation rate p ~ 1.59/n and of approximately 20.9% to the standard
mutation rate p = 1/n.

A dynamic policy can also be beneficial for the radius r; of RLS on LEADIN-
GONES. In this case, however, we do not rely on a precise analysis of the ex-
pected runtime with fitness-dependent mutation. There is still a good approach
to determine an optimal fitness-based policy. It follows the idea that an optimal
algorithm behavior is to iteratively maximize the fitness. This translates into
trying to choose the parameters that maximize the probability of a strict fitness
improvement of the candidate solution.

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness ¢ can be calculated directly and results in the
following.

kn—i—1)-----(n—i—k+1)
nn—1)-----(n—k+1)

The value is easy to study and, in particular, to maximize with respect of
k. The key observation is that

q(n, ki) =

q(n,k,i) < q(n,k+1,i)ifand only if i < (n — k)/(k+ 1)

Therefore the optimal fitness-dependent policy, i.e. the one that chooses k
with respect to the fitness ¢ maximizing ¢;, is

k(n,i):=|n/(i+1)] (3.2)

bits when the current fitness is i. This results in an expected runtime of 0.39n2,
which corresponds to a 22% improvement of the choice of fixed parameters.

It is important to note also that this policy is monotonically decreasing,
i.e. the higher the fitness, the fewer the optimal number of bits to be flipped.
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This gives us insight on the behavior of the algorithm in solving the optimiza-
tion problem: as expected, an optimal policy requires looking further from the
current individual if it is not a good solution candidate.

3.2.4 Exact Runtime Analysis for OneMax

For ONEMAX, as well, a study of the optimal dynamic parameter choices has
been conducted for both RLS and (1 + 1) EA. The first approach follows the
same idea that an optimal algorithm tries to maximize fitness improvement at
each step. This led to the construction of a so-called drift-maximizer parameter
policy in [20]. The main idea is to choose as radius kgyig(n,1) a value that
maximizes the expected drift, defined in terms of the fitness value, for the
specific current fitness [. Mathematically, the expression to be maximized is
the following:

E[A(n,1,k)] := E[max{OM(y) — OM(z), 0}|OM(z) = I,y « flip;(2)]
+k
= > (i—1)P[OM(y) = i|OM(z) = L,y « flip(z)]
i=l+1 (3.3)
_ v ("7 L) (i — k)

i=[k/2] (Z)

In the last line, the fact that flipping ¢ of the previously incorrect n — [ bits
implies that we flip &k — ¢ of the previously correct [ bits is used, resulting in
a fitness increase of i — (k — i) = 2i — k. This event occurs with probability
(7Y (L) (@20 — k)/(), since there are (";') ways of choosing i previously
incorrect bits, (kl_z) ways of choosing k — i previously correct bits, and (}) ways
of choosing pairwise different bit positions.

Therefore, we choose as radius kqur, € argmax; E[A(l,k)]. For RLS on
ONEMAX this algorithm has been proved to be near-optimal, i.e. to exceed the
unary unbiased black-box complexity of at most O(n?/3)1log? n).

It is straightforward to see that an analogous approach could be built for
(14+1) EA on ONEMAX, choosing the mutation rate pqyie (n, () which maximizes

the following
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E[A(n,l,p)] ==
= E[max{OM(y) — OM(z),0}|OM(x) = I,y «+ flip,(x), k ~ Bin(n, p)]

n

= Z (1 — 1) P[OM(y) = i|OM(z) = I,y < flip;(z), k ~ Bin(n, p)]

i=l+1
= Bin(n, p)(k)E[A(n, 1, k)]
k=1
"/ E (YL @ik
_ k(1 _ p)n—k ik ;L
g(<k>p (1-p) i:%ﬂ @) )

However, although this approach seems promising and, in fact, obtains good
results, it is still near optimal. This led to the development of an exact optimal
approach in [10]. The idea is that the best-possible algorithm is the one that
minimizes the expected remaining optimization time. The optimal remaining
time is then defined iteratively backward. For RLS we first of all observe that
if the fitness is n — 1, the optimal radius & is 1, since it is also the only feasible
choice. The expected time to the optimum is then n, since we have a probability
of 1/n to flip the last bit and reach the optimum and a probability of (n—1)/n
to stay in state n — 1.

Then, we calculate the optimal expected runtime from any possible starting
fitness value with the following recursive formula.

n—1
E[T 5 (n,0)] == 1+ 3 P[OM(y) = i|OM(z) = I,y « flipy(2)]E[Top(n, )]
i=l+1

We then simply set kopt(n,!) = argmin,, E[To(gt)(n, D).

In [10] it is shown that the optimal k is effectively different from the drift-
mazximizer k, even if the performance improvement is not asymptotically no-
table.

The analogous approach can also be used to study the optimal mutation
rate popt(n,l) for (1 + 1) EA. The expression to be minimized is, in this case,
the following:

E[T.5 (n,1)] =
=1+ P[OM(y) < [|OM(z) = I,y + flip(x), k ~ Bin(n, p)]E[TE)(n, )]+

n
+ Z (1 —)P[OM(y) = i|OM(x) = I,y < flip,(x), k ~ Bin(n, p)|E[Ttpt(n, )]
i=l+1
and for | =n — 1, we take popt(n,l) = 1/n, IE[TO(;t/n)(n,n —1)]=n.
The formula seems heavy but the computation is actually straightforward,
using again the transition probabilities as in (3.3).
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3.2.5 DAC on LeadingOnes

As we saw, the study of parameter selection is quite well understood for bench-
mark problems, in particular for RLS on LEADINGONES, which, among the
ones presented, corresponds also to the more nuanced case, incorporating de-
pendence in the choice of bit to flip and also position-dependence in the fitness
function. It is therefore useful to build on these theoretical results a study of
modern approaches to the parameter problem. This is the reason why the radius
choice for RLS in LEADINGONES has been used as an important benchmark for
the study of DAC techniques in [7]. The work is particularly relevant for two
results: it studies the behavior of the optimal policy of RLS on LEADINGONES
for restricted portfolios of possible radii, and then applies a DAC agent to the
radius selection in RLS solving LEADINGONES for both the full and restricted
portfolio.

The idea behind the study of different restricted portfolios is to understand
the influence of different parameter possibilities in the learning process of the
RL agent, in particular the dimension of the portfolio. This type of study gives
interesting insights also in terms of algorithm design, since in many practical
problems the full portfolio of parameter choices is not well known and therefore
it is useful to understand what a good choice of the portfolio would be.

The baseline of the work in [7] is the optimal policy for the full portfolio K =
[0..n] already presented in (3.2). The optimal policy for restricted portfolios K
is derived consequently as

T,

(()ift) (1) = argmax q(r,1)
re{rjup,'ri“f}

where r3"? = max{r € K|r < mopt(i)} and 7" = min{r € K|r > mopt (i)},
and ¢q(r, 7) is the probability of strict improvement of fitness if the current fitness
is ¢ and the radius chosen is r. The determination of the highest value for the
probability of strict improvement ¢(-,4) follows from the observation that the
function ¢(-, ) is concave: it has a single maximum. Therefore, to find the value
of r € X that realizes argmax, we simply have to order X and find the highest
value before ¢(-,4) begins to decrease.

Once the value k of the dimension of the portfolios is fixed, in the paper the
following is studied:

o powers_of_2: {228 <nAi€[0.k—1]}
o initial_segment: [l..k]
o evenly_spread: {i-|n/k|+ 1|i € [0..k — 1]}

e optimal: portfolio with the lowest expected time among all k-subsets of
n that contain the search radius 1. This portfolio is determined by a
brute-force approach by trying all possible subsets.

We note that initial studies on optimal policies for restricted portfolios are
conducted thoroughly: the first insights suggest that initial_segment and
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powers_of_2 are the similar to the optimal portfolio, which matches results
for full portfolio even for small k. powers_of_2 seems then to obtain better
results than initial_segment. This suggests that it is good to have more than
one small radius to choose among, but having also some bigger radii is more
beneficial than having more small radii.

In the paper, these results are used as a benchmark for an DAC agent. The
DAC framework has already been presented as a contextual Markov decision
process (cMDP) in Section 2.6.2. In this case a RL agent is used which operates
in an offline training phase: the state space corresponds to the possible fitness
values, the action phase is the chosen portfolio K. The transition and reward
functions remain as black-box; in particular, the reward at time ¢ is modeled
as ry = f(xy) — f(xy—1) — 1, where xz; is the current individual at time ¢ and
f(z) =: s; its fitness.

The DAC agent adopted for the problem is Q-learning [84], which is a re-
inforcement learning paradigm in which the goal is to learn the Q-function
Q:8 x A — R, which maps a state-action pair to the cumulative function
reward that is received after playing an action a in state s. Given a state s; and
an action ay, the Q-value Q(s;, a;) can be updated using temporal differences
(TD) as

Q(s¢, ar) « (st ar) + a((ry + ymax Q(se41, ) — Q(s¢, ar))

where « is the learning rate and -y is the discount factor.

The reward-maximizing policy can then be defined only by using the learned
Q-function as w(s) = argmax,c4 Q(,-). Typically, for better exploration, e-
greedy approach is used, where € gives the probability that an action a; is
replaced with a randomly sampled one.

Furthermore, in [63] is proposed to model the Q-function using a neural
network. This approach was shown to work very well, in particular if combined
with the idea in [43] to use two copies of the neural network, one used to select
maximizing actions and the other to predict the value, in order to improve
stability. The result is the so-called double deep Q network, which was used in
the paper [7] as DAC agent for RLS on LEADINGONES.

The results are analyzed in detail in the paper: we will sum up the main
ones. Three experiments are carried out: in the first one, the RL agent tries
to optimize LEADINGONES for n = 50. The result is very good: the DDQN
is able to reach the performance of the optimal policy in all cases tested, and
the learned policies are quite similar to the optimal ones. Secondly, the impact
of portfolio size on RL’s learning behaviors is further investigated for n = 50
and n = 100. It seems that the larger portfolio dimension k, the worse the
learning behavior of the DDQN. For n = 100, in particular, it is observed that
performance measures decreased rapidly as k increased, becoming no longer
competitive with the optimal ones. In the third experiment, this phenomenon
of poor generalization is studied more in depth, training DDQN agents on
problems of dimension n € {150,200}. Even with small portfolios, the DAC
agent seems not to work well, failing to get close to the optimal policy.

The results are shown in terms of hitting ratio, which indicates the fre-
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quency the agent reaches the expected optimal performance within 0.25% of its
standard deviation during the training process. We provide the plots from the
paper in Figure 3.1. In the first plot, hitting ratio for dimension n = 50 and
n = 100 for the evenly_spread portfolio of various sizes k are shown. In the
second plot, it is represented the number of total hittings, i.e. the number of
times the agent reaches the expected optimal performance, during the entire
training process in various RL runs. The plots show both the dependence on
the dimension and on the portfolio size. In particular, it is clear that the RL
agent does not generalize well when n increases, not being able to reach the
optimal policy a satisfactory number of times when n = 150 and n = 200.
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Figure 3.1: Hitting ratio and number of hitting points for the DDQN agent in
various dimensions

The conclusion of the paper suggests that the promising results for the lower
dimension should lead to the development of a fruitful stream of research on dia-
logue between parameter control and dynamic algorithm configuration, starting
with studies that could help to overcome the problem of poor generalization of
the RL agent. In particular, a better understanding of the problem and new
parameter control solutions may lead to interesting outcomes.



Chapter 4

Dynamic Policies on
Enhanced State Spaces

As we observed from the results in [7], the RL agent still fails to gain good
performance in high dimensions. A possible research direction, also suggested
by the authors of the paper in the conclusion, is to try to incorporate more
information into the RLS policy than just fitness. A study of this approach
will be particularly useful also to understand how to treat more general cases;
for example, to build a good configuration of DDQN also for more complex
algorithms of practical concerns for which theoretical guarantees are not given.
Moreover, this research direction seems promising, as a first tentative study was
conducted in the paper Can ONEMAX help optimizing LEADINGONES using
the EA+RL method? [11]. In this article, the authors suggested that ONEMAX
could help optimize LEADINGONES: one of the strategies adopted is to use a
random agent which in each state, i.e. for each LEADINGONES fitness value,
selects as action the objective function, choosing LEADINGONES objective with
probability ¢, and ONEMAX with probability 1 — q. The selected objective is
then used to determine the reward after applying RLS with a standard radius
of 1. In the paper, both theoretical and empirical analyses are conducted. The
result is promising, since the expected average running time for LEADINGONES
using the random agent is n?q/(1 + ¢). In particular, selecting ¢ = 1/2, which
still optimizes LEADINGONES in at least half of the cases, the expected runtime
is n?/3, which can improve the expected runtime with radius 1 of 0.5n2 by a
factor of 1.5.

The main original result of this thesis is, in fact, the answer to the question
Can ONEMAX help optimizing LEADINGONES? We studied different theoretical-
inspired RLS configurations, modifying both the parameter policy and the selec-
tion process, trying to incorporate information from ONEMAX fitness in solving
LEADINGONES. The information from ONEMAX fitness is taken into account in
each round of the algorithm together with LEADINGONES fitness, and not alter-
natively to it with some probability, as in [11]. Furthermore, inspired by the ap-
proach followed to integrate ONEMAX fitness into RLS solving LEADINGONES,
we also studied the most general setting, taking an n-dimensional state space
where to each single bit-string x corresponds a parameter configuration.

46
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4.1 Optimal Policy for Lexicographic Selection

4.1.1 Optimal Policy for Lexicographic RLS in Two-dimensional
State Space

Incorporating more information from the current search point in RLS itera-
tions brings along a further layer of complexity rather than the cases studied
in the previous sections. In fact, if we consider other metrics in addition to
LEADINGONES fitness, the progression of the metric is no longer monotonic.
When we take into account only the LEADINGONES fitness to determine the
policy state, the space 8 we consider is a one-dimensional space. Thus, we
can naturally define on it a total ordering relation based on LEADINGONES fit-
ness. Furthermore, we are sure that when the algorithm moves to a new state,
it moves monotonically, always reaching a state corresponding to higher fitness.

In a two-dimensional space 8(?), this no longer holds, since we no longer
have a natural total ordering relation. In particular, if we take into account
the fitness of both LEADINGONES and ONEMAX, this makes an analysis of the
exact distribution of the runtime more complex. This is even more difficult if we
consider a n-dimensional state space S where at each bit-string = corresponds
a different state.

Introducing a two-dimensional state space S(?) based on LEADINGONES and
ONEMAX fitness makes the progression of the algorithm no longer monotone
as we intended before: the algorithm, as it is designed, includes the rule that
it is always better to move to a higher LEADINGONES fitness state, but does
not have any rule regarding ONEMAX fitness. This because we do not know
the answer to questions like: is it better a state, e.g. (LO(z) = 3,0M(z) =5)
or (LO(z) = 3,0M(z) = 3) to solve LEADINGONES when n = 77 It is not
obvious that we should make on ONEMAX fitness the same assumption made
on LEADINGONES fitness that it is always preferable to be in a state with a
higher value of fitness.

In any case, studying better this situation may be interesting, since it means
to intervene not only on the radius policy but also on the selection mechanism.
The already good results on LEADINGONES obtained by controlling the optimal
policy in [15] suggest that controlling a further element of the algorithm, the
selection operator, may be the key to further notable improvement. For this
reason, we will first conduct our analysis under the assumption that, when
optimizing LEADINGONES, given the same LEADINGONES fitness, a state with
higher ONEMAX fitness is preferable; as we will note along the analysis, this
assumption is also motivated from a theoretical point of view and will help us
to simplify the analysis of the optimal policy.

The assumption is integrated in the algorithm through the selection oper-
ator: in particular, as before, we accept a new solution y, mutated from z,
if y improves the LEADINGONES fitness of x, regardless ONEMAX fitness, but
now, when y has the same LEADINGONES fitness of x, we accept the mutation
only if y improves the ONEMAX fitness of . The theoretical motivation be-
hind this choice can be seen as the fact that introducing this rule also means
adding a total ordering relation in the two-dimensional state space, based on a
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lexicographic rule on LEADINGCONES and ONEMAX fitness. In particular, if we
consider as states the couples (LO(z), OM(z)) of LEADINGONES and ONEMAX
fitness, the state space is a lattice of (n + 1)(n + 2)/2 points with the following
relation.

(I1,mq) > (l2,m2) if and only if (I > l2) or (I =l and my > mg)

where the first value represents the LEADINCONES fitness, and the second
the ONEMAX fitness.

As one can expect, the lexicographic ordering extremely simplifies the anal-
ysis. In particular, in this way we have a projection of the two-dimensional
search lattice into a one-dimensional space, with the algorithm moving towards
a growing direction of the ordering. We will later empirically verify that the
assumption also leads to a performance improvement.

In order to build the optimal policy, we would like to study, as done in the
examples from the previous chapter, the transition probabilities in the state
space; the search direction guaranteed by the lexicographic ordering makes it
easier to study the possible transitions. The idea is to exploit this fact by
calculating the transition probabilities backwards, i.e. from a lexicographically
higher to a lower state: since the algorithm can only move to a lexicographically
higher state, we will have that the only possible transitions will be to states
already processed.

We analyze one state at a time: the analysis of the target state (n,n) is
trivial, since it will not move to any other state and the expected runtime is
0. We then study the state (I =n — 1,m = n — 1), which corresponds to the
bit-string 1”0 with 1 in every position and a 0 in the last one; in this case
it is obvious that the only transition possibilities are to stay in (n — 1,n — 1)
or to move to the optimal state (n,n). Thus, the only possible radius is 1. We
therefore define

kopt(n —1,n—1) =1 (4.1)

where we use the notation kg (I, m) to indicate the optimal radius, i.e. the
one that minimizes the expected runtime, in the state with LO(z) = [ and

OM(z) = m. With T, (f]’;) (I,m) we will denote the runtime with radius choice

k for state (I,m) and optimal radius for the other states. We will denote as

Topt(1,m) the optimal runtime Tég{’pt)(l, m).

It is obvious, given the radius equal to 1, that the transition probability
from (n —1,n —1) to (n,n) is 1/n, which is the probability of flipping the last
bit.

In this case, it is also easy to compute the expected time to the optimum.
In fact, for the transition considered — from (n — 1,n — 1) to (n,n) — the
ONEMAX fitness is not really taken into account since it has to be the same
as the LEADINGONES fitness. Consequently, we have a situation similar to the
one described in section 3.2 with reference to the paper [15]. In the paper it is

shown that the time to a strict LEADINGONES improvement follows a geometric
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distribution Geom(q;), where g; is the probability of strict improvement: in this
case, a strict improvement corresponds to a transition to the target state. The
runtime to the optimum from (n — 1,n — 1) is therefore Ty (n — 1,n — 1) ~
Geom(1/n) and the expected runtime is

ETope(n —1,n—1))=n (4.2)

Since we fixed the optimal values of a point, we can proceed recursively
backward to determine the optimal expected runtime and the optimal policy
for each state. In particular, we readapted the idea proposed in [10] to find the
optimal policy for ONEMAX that we presented in Section 3.2.

We proceed one state at a time: after the state (n — 1,n — 1), moving lexi-
cographically backward, we analyze the state (n —2,n — 1), which corresponds
to having all the ones in the bit-string and a 0 in position n — 1, or 1"~101.
In this case, the possibilities are to take the radius £ = 1 and move directly
to the optimal state or to take k& = 2 and move to the state (n — 1,n — 1)
analyzed before. Defining the optimal radius policy corresponds to determine
which of these two radius options guarantees a lowest runtime starting from
(n —2,n —1). To do this, we calculate the expected runtime in the two cases,

namely E[T, (S;t) (I,m)] and E[T, 0(52 (I,m)] in the notation introduced before.

For radius choice £ = 1, the transition probabilities are similar to the case
(n—1,n—1), because the only possible transition is to the target space (n,n),
which happens with a probability of 1/n. The time to the optimum is again
distributed as a geometric random variable with parameter 1/n, therefore the
expected time to the optimum is n.

For k = 2, the only feasible transition is to the state (n —1,n — 1) when we
flip the last two bits, which happens with probability 1/(n,2). The expected

runtime from (n—1,n—1) to the optimum is then n. Therefore, it is clear, even

without a precise analysis, that the expected runtime E[7, O(;Z(l,m)] is greater
than n and that kope(n —2,n —1) = 1.

We can formalize and generalize the argument made for this case, by explic-
itly writing down the runtime expectation from a certain starting state (I,m),

[T (1,m)].

Proposition 38. Let (I,m) be the state corresponding to LO(x) = [ and
OM(z) = m. Suppose that we have already determined for every (I';m’)
such that (I';m') > (I, m) with lexicographic ordering the optimal radius choice
kopt(I',m'), i.e. the one which minimizes the expected runtime. Then, given a
radius choice k, the expected runtime to the optimum from (I,m) choosing a
radius k for (I,m) and the optimal radius for the other states is
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E[T") (1, m)] = 1+

opt
+P(LO(y) = I, OM(y) = m|LO(z) = I, OM(x) = m, y  variate(z)) - E[T\s (1, m)]+
+ z_: i =\, OM(y) = p|LO(x) =1, OM(z) = m,y < variate(x))-
Ot "
[ opt()\,,u)]
(4.3)

For wvariate(x), we intend that y is the effect of a complete iteration of
the RLS algorithm from x, with mutation and then lexicographic selection.
y is equal to x every time the selection is not accepted. From now on, we
will use the notation P((A, p)|(l,m)) = P(LO(y) = A,OM(y) = p|LO(x) =
[,OM(z) = m,y <« variate(x)).

Proof. The formula is a direct consequence of the law of total probabilities,
with the initial 41 which takes into account the evaluation of the target state
(n,n). O

As we can see from the formula (4.3), when we calculate the expected run-

time E| (Ept)(l m)| from a given starting state (I, m), the term E[ (Spt)(l m)| ap-

pears both on the right- and on the left-hand side; we can therefore reformulate
as follows (4.3), explicitly writing the unknown term.

1+ 3350 S PO i)l m)) - E[Tope (A, )

(
E[TS) (1, m)] = 1+ P((1, m)|(1,m))

opt

(4.4)

It consists simply in taking the right-hand side of (4.3) with the sum starting
from A =1+ 1 and g = max{m + 1, A} and dividing it by 1 + P((l,m)|(l,m)).
Note that P((l,m)|(l,m)) is the probability that the mutation is not accepted,
which happens when y < mutate(x) is such that LO(y) < LO(x) or LO(y) =
LO(x) and OM(y) < OM(z).

From Proposition 38, we can then find the optimal expected runtime for
RLS to solve LEADINGONES by starting from a random bit-string.

Theorem 39. Assume that (0 is an initial random bit-string of length n
selected uniformly at random among the bit-strings of length n. The optimal
runtime of RLS to solve the LEADINGONES problem of dimension n starting
from z©) is given by the formula

n—1n—1

E[Tom] =1+ > Y P(LO=™) =1, 0M(zV) = m)E[T,pu(l,m)]  (4.5)
=0 m=l

Also in this case the proof is a trivial application of the law of total proba-
bilities.
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Note that P(LO(z(®) =1, OM(z(®)) = m) is the probability of the starting
state to be (I, m), which is not uniform but must take in account the fact that
certain states are more probable since the number of bit-strings in the state are
more. For example, if n = 4, P(z(*) = (3,3)) = 1/16, while P(z(®) = (1,2)) =
1/8.

Given the formula (4.3), to determine the expected runtime E[ O(pt)(l m)]
from the state (I,m) we can therefore derive the optimal policy as

kopt (1, m) = argmin E[Téﬁt)(l, m)] (4.6)
ke[n—I]

It is important to note that this straightforward approach leads, by defini-
tion, to the optimal policy. In fact, if we define as optimal policy the one which
minimizes the expected runtime, this approach finds it directly. The efficacy
of this approach was shown also in [10] for the optimal radius policy for RLS
on ONEMAX. In the paper, it is shown that maximizing the drift is indeed not
the optimal approach by noting the differences with the runtime minimizer we
also adopted.

Algorithmically, the optimal radius policy is determined by the procedure
described in Algorithm 10. The idea is to fix the state (I, m), apply the for-
mula (4.3) computing the expected runtime for each value of k € [n — ] and
then to take the k£ which leads to the lowest runtime as optimal.

Algorithm 10 Determination of the optimal lexicographic policy

1: Input: Dimension n
2 Kin—1,n—1]+1
3: Tln—1,n—1]+n
4: forl=1,...,n—2do

5 form=1I0+1,...,n—2do

6 for \=1[,...,n—1do

7: for u=m,...,n —1 do calculate P®) (X, u)|(I,m))

8: end for

9 TOLm] (1 + S0k, Sl POl m) /(1 +

PRI, m)|(1,m)))

10: K[l,m] + argmm,€ T (1,m)
11: T[l,m] < ming T®) (1, m)

12: end for

13: end for

14: end for

Note that the output of the algorithm are two matrices: K and T, whose
(I, m)-th entry represents, respectively, the optimal radius and the optimal ex-
pected runtime of and from the state (I,m). One of the advantages of using
a two-dimensional state space is indeed the possibility to use matrices as data
structures, which makes the computation more efficient and gives also the pos-
sibility to visualize the policy used and the expected runtime, as we will show
in the following sections.
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Algorithm 10 still does not specify how to compute the transition proba-
bilities P((A, p)|(I,m))). The question is far from being trivial and is indeed
one of the biggest challenges in this method: one may hope to derive distri-
butional information on the state space that helps to determine the transition
probabilities. This is indeed the approach that was followed in some of the
results stated before, in particular to determine the transition probabilities for
ONEMAX in [10] it is simply observed that moving to a different ONEMAX fit-
ness state consists of flipping a certain number of ones and zeros. In particular,
it is simple to observe that

B B B min(mi,k) (nZl) . (nl;j;;bl)
P(OM(y) = ma | OM(z) =m1) = Z - m (4.7)

n
i=max(0,m1—m2) (k)

However, LEADINGONES introduces a position dependence that makes the
computation of these probabilities much more difficult. Indeed, in previous
work, the transition probability from a LEADINGONES state to another is
never computed directly: the only probability computed is the probability
of strict improvement in [15], which takes into account only the probability
of flipping the (LO(z) + 1)-th bit. The fact that the distribution of ones in
the tail remains unknown makes it impractical to determine a formula for
the transition probabilities. If we consider the one-dimensional state space
based only on LEADINGONES fitness, the problems are given by cases like, e.g.,
n =4,k = 1,LO(x) = 1. In the example, the information on LEADINGONES
fitness does not allow us to discriminate between & = 1010 or x = 1001 for
which the transition probability to y = 1110 is, respectively, 1/4 or 0. It is easy
to see from the same example that the situation does not change by introduc-
ing also information about ONEMAX fitness. Therefore, in our two-dimensional
state space, it is still impractical to find a formula to compute the transition
probabilities.

The approach implemented to determine the transition probabilities thus
consists in directly counting the possible cases and divide it by the total cases.
The procedure for doing it is summarized in Algorithm 11.

Algorithm 11 Computation of transition probabilities

1. Input: Starting state (I, m); arrival state (\, p); dimension n; radius k

2. PO((A, )| (L, m)) 0

3: for z € (I,m) do

4: for y € (A\, ) do

5: if |z —y| = k then P® (X, p)|(1,m)) < PE (X, w)|(l,m))+1/(n, k)
6: end if

7 end for

8: end for

The idea of the procedure is to collapse different bit-cases = into the same
state.
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However, as we can see, it is computationally demanding to calculate the
transition probabilities in this way, since the algorithm needs to look at every
possible starting and arrival state, and for each state at very corresponding bit-
string. It is easy to see that the number of operations required is exponential,
since only the number of possible starting bit-strings is 2. Considering also
the possible arrival states, we have 1+ 2 + --- + 27 = 27=1. (2" 4+ 1). If we
consider that this operation must be repeated for every possible k, we obtain a
number of operations that is O(n24™).

On the other hand, it does not seem promising to follow a solution similar
to the one adopted for the one-dimensional state space in [15], which models
directly the distribution of the runtime based on the probability of strict im-
provement of LEADINCONES fitness from a starting state. In fact, taking into
account only the probability of strict improvement does not take advantage of
ONEMAX fitness because it means looking only at the probability to flip the
(LO(x) + 1)-th bit, while ONEMAX fitness gives information on the number of
ones in positions from (LO(z) + 2) to n. This will therefore result in the same
policy of the one-dimensional state space.

One could try to look at the probability of strict lexicographic improvement.
However, even in this case, trying simply to maximize this probability does
not seem promising to obtain an optimal policy. Similarly to what observed
in [15], we can state that the time for improvement is distributed as a geometric
distribution with parameter ¢; ;, where ¢ and j are the LEADINGONES and
ONEMAX fitness, respectively. In the lexicographic two-dimensional space, the
probability of strict improvement from state (i, j) with radius r is

Pl s -1
q(r,i,j) = rryr—1 n—i—t T n—i—t n—j—1 (n_i_l)(ﬁii) h ;
1= 55 + 1= n—trl Zk:(r/ﬂ ey ) otherwise

However, the function ¢(r,4,7) has no immediate concavity properties as
q(r, 1), the probability of improvement when considering only LEADINGONES
fitness. We tried to plot some values of ¢(r,4,7) fixing (7,j) to understand
the behavior of the function. The plots are in Figure 4.1. Fixed n,¢ and j,
we represented in blue the function ¢(r,i,j) with respect of the radius choice
r, and in green the function - :;11 ”;Zt The red line represents the value
r = 2(n —j —1). Obviously, the chosen radius would be r that maximizes

q(r,4,7).

Plot o discrete i1 - n: 50, : 0, : 10

Figure 4.1: Plots of ¢(r,1,j) with respect to 7.
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All simulations present a similar behavior. As we can also see from the
figure, in this approach, the policy obtained maximizing ¢(r, 4, j) with respect
to r is too conservative and is not really able to adapt to the current state. The
main problem of this approach is that a strict improvement in the lexicographic
sense it does not always represent a notable gain, e.g. it could be a transition
from 0™ to 0"~'1, and it does not exploit the real advantage of the information
on ONEMAX, which is the possibility of aiming for bigger updates in terms of
LEADINGONES fitness if we have a higher number of ones in the tail, e.g. if
we are in (0,n — 1) we could aim for the optimum (n,n) rather than a strict
lexicographic improvement which could consist in going to (1,0).

Therefore, we decided to focus on a deeper analysis of the policy developed
in (4.6).

4.1.2 Optimal Policy for Lexicographic RLS in n-dimensional
State Space

The challenges concerning the computation of transition probabilities explained
in the previous section suggested us to extend the state space to dimension n,
i.e. to consider each individual bit-string as a distinct state. In this way, we
can overcome the problem of the computation of transition probabilities since
we no longer have the collapse of different bit-strings into the same state. In
particular, given a radius k, the transition probabilities are now easily computed
as

ny 3 If dH x, y - ]C
Py | 2,y « 2) ={ () o (4.8)
0, otherwise

where we indicate with dg(x,y) the Hamming distance of z from y, which,
in our case, corresponds to the number of different bits in the two strings.

The idea of using an n-dimensional state space is not only driven by the
need to simplify the computation of transition probabilities but is deeply rooted
in the core motivations of our research. Our analysis aims to understand the
performance gains achieved by leveraging additional state information, there-
fore constructing a policy in the full n-dimensional state space pushes this
exploration to its theoretical limit, as it utilizes all available information from
the current bit-string. Consequently, the results obtained serve as an essential
benchmark for dynamic parameter policies in enhanced state spaces.

To build the optimal policy for the general state space, we note that we can
readapt the argument from Section 4.1.1.

We now use the notation kqp:(x) to indicate the optimal radius for the bit-
string z. We will analogously denote as Ti,,(z) the optimal runtime, starting

from the bit-string z. With To(;fg (x) we refer to the runtime with parameter
choice radius k for state z and optimal radius for the other states.

The formulas (4.3) and (4.6) for the optimal policy can be readapted in the
n-dimensional state space case in a natural way, analogously to what was done

before.
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E[T™)(2)] = 1 + P(z|z) - E[T") (2)]+

opt opt

+ Z P(y|z,y < variate(z)) - E[Topt ()]

(4.9)

Note that in this case, the probabilities can be directly computed by looking
at x and y and applying (4.8). Note also that the sum is only on the states y,
with y > x, where the relation is intended with respect to the lexicographical
ordering. In fact, given the lexicographic selection, the only possible transitions
are from a state y lexicographically greater than z.

In order to simplify the computation of the expected execution time (4.9),
we decided to accept new candidate solutions y, if and only if y brings a strict
improvement to x, i.e. y > x lexicographically. This little change makes the
computation far easier because it excludes a transition between two states lex-
icographically equivalent, i.e. with same LEADINGONES and ONEMAX fitness.
Therefore, the formula (4.9) includes only one unknown expectation, E[Té;ft) (2)]
and makes it possible a explicit solution. This choice is also coherent with the
lexicographic assumption, which suggest that the best moving direction for the
algorithm is to states with higher LEADINGONES or same LEADINGONES and
higher ONEMAX fitness.

The optimal policy for every single bit-string is then derived as

kopt(z) = argmin E[T%) ()] (4.10)
ke[n—LO(xz)]

And the expected total time,

Elow] =1+ Y. P@O)E[T,u (=) (4.11)

2(0) bit-string

where in this case the sum is over all possible bit strings and the probability
of initial bit-string P(z(?)) is uniform, i.e. P(z(?)) = 1/2" for every possible
value of ().

The arguments and the implementation insights can then be easily adapted
from the previous section. We note that in this case the computation of the
probabilities no longer requires to count every case by enumeration, but the
derivation of the optimal policy is still quite computationally costly. In fact, to
find kop the algorithm must try all possible values of k, which are n — LO(x),
for all 2™ states. Thus the cost still remains exponential in the dimension.
Moreover, there is no longer the possibility to exploit in the implementation a
matrix data structure.

The policy proposed in this section is particularly important, since it deals
with the most general setting where all the information from the bit-string is
exploited to build the optimal policy. Therefore the one provided is the best
and most general policy possible for RLS on LEADINGONES in the lexicographic
setting, and thus provides us with a very important benchmark for this notable
problem.
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4.2 Optimal Policy for Standard Selection

Even if we widely motivated the lexicographic assumption, it is indeed inter-
esting to study the optimal policy for the algorithm in the classical setting,
without modifying the selection mechanism. In this way, it is possible to isolate
the effect of parameter selection policy in a well-studied setting. The obtained
results will also be more easily interpretable and comparable with the previous
studied from literature. For this reason, we will strictly adhere to the setting
studied in the literature, where a new solution y generated from z is accepted
if and only if LO(y) > LO(z).

In this setting, we will focus on the two-dimensional state space: the compu-
tation is more demanding with the standard selection and is therefore beneficial
to limit the number of states. Moreover, the results for lexicographic selection
that we present in Section 5.1.1 highlight that taking information from the
whole bit-string does not significantly improve the expected runtime with re-
spect to when we consider LEADINGONES and ONEMAX fitness. Lastly, policies
on the two-dimensional space are easier to interpret since they can be visualized
as matrices.

We will therefore build a near-to-optimal policy for standard selection in
the two-dimensional state space. In particular, we will follow the argument in
the section above, adapting it to the new setting, where we accept a mutation
y from z if and only if LO(y) > LO(z).

The argument is similar to what was done before; we start considering the
two-dimensional search space. As before, the expected runtime is

E[T" (1, m)] = 1+ P((L,m) | (1, m)) - E[T5) (1, m)]+

opt opt

n—1 n—1
+ 0 D PG | (hm) - E[Top (X, w)] (4.12)
(A,u))\;i},m) n=

The only difference in the formula from (4.3) is in the starting index of
the sum over the ONEMAX fitness values. In particular, we no longer have
the guarantee that states reachable from (I,m) are the ones lexicographically
bigger; thus we do not have the guarantee that they are the ones already pro-
cessed and for which we already know E[T,,¢(A, pt)]. In particular, if we proceed
backward as before, we have already processed all nodes with strictly higher
LEADINGONES fitness but, for every value of LEADINGONES fitness [, we have
as unknown IE[TO(;) (Il,m)] form =1,...,n—1. The result is that equation (4.12)
leads to a linear system of n — [+ 1 equations in n — [+ 1 unknown. To write it
in standard form Az = b, we move to the left-hand side the terms involving the
states with LEADINGONES fitness of [, whose expected runtime is unknown.
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n—1
BT (1, m)) = S B(( )| (1, m) B[ Tope(1, 12)] =
p=l

] (4.13)
=1+ > > P(Aw|l,m)E[Tp(\p)], Ym=1...,n—1
A=I+1 =\
Or equivalently
n—1
(1= PO, m) | (1,m)ETS G m)] = 3 B w)](1,m)) - E[Top(l, 1)) =
pn=l
n—1 n—1 o
=14+ > > PO wIlm)ETp(A )], Ym=1,...,n—1
A=l+1 p=X
(4.14)

We can write the linear system in matrix form Az = b as follows.

E[T %) (1,0)] 14 SR ST P )1 D) Tt (O )
E[Téﬁzumn N ER o mz << >|<H+1>>E[Topt<w>]

E[Téﬁzu n—1)] 1+ Y00, ST P, 1)1 — 1) ETope (A, )]

(1 =PO(,0) ] (1,1)) PO((1,1+1) | (1,1) PO((1,n —1) | (1)
PO((1,0) | GLr+1) (1 -PH(( l+1) [GI+D) o PO(n =1 [ (1+1)

PO(LY [ (Ln-1)  BO@I+D) | @Gn=1) - (1=PO(Ln-1)] @n—1)

To address this system, we examine its solvability. In particular, we would
like to prove that the matrix A is non-singular, in that case it means that it is
invertible and thus = A~'b, i.e. the solution always exist unique.

We note that for each value of LEADINGONES fitness [ < n and for each
value of ONEMAX fitness y and m, the probability P*) (X, 1) | (1,m)) is strictly
greater than 0 for at least one value of A > [. This means that ZZ;ll PR (1, ) |
(I,m)) <1 for each m =1,...,n — 1. In particular, it follows that

nf PR (1) | (1,m)) <1—=P®((1,m) | (1,m)), Ym=1I,...,n—1 (4.15)
ptm

This means that the matrix A is diagonally dominant and thus non-singular.

We can therefore solve the system for each k and thus find the value of k
that minimizes the expected runtime for each state.

We must note that in this case, the procedure to obtain the optimal policy
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requires one to compute the expected runtime for all possible combinations of
k, which means that, in solving the system above, we should choose a vector k
with a different radius value for each ONEMAX fitness and then choose the best
combination. However, this would require us to try an exponential number of
combinations, namely (n — 1)"~=1. So, instead of doing that, we decided to
develop an approximation by fixing the same value of k for all states (I, m) with

m=1,...,n — 1 with the same LEADINGONES fitness [ and use it to compute
the corresponding E[Téﬁt)(l,m)] for every kK = n —1[,...,n. We then choose

kopt = argming, E[To(}]fg (I,m)]. The policy we propose for this setting is therefore
a quasi-optimal policy, build upond the standard selection. In the following
section, we propose another solution when the algorithm does not have access

to ONEMAX fitness during selection.

4.2.1 Strict Standard Selection

As emerges before, the near-optimal policy is computationally quite demand-
ing: empirical results highlighted that it is not possible to compute the policy
for more than very low dimensions. For this reason, we also propose a slight
variance of the setting, keeping the requirement of using only LEADINGONES
fitness in selection but also simplifying the computation. In this setting, that
we will call strict standard, we accept a new candidate y from z if and only if
LO(y) > LO(x). The difference from the discussion in previous section is that
we no longer accept a mutation if LO(y) = LO(x): this choice, even if is not
popular in literature, should not heavily affect the behavior of the algorithm.
In fact, the idea of accepting movements to bit-strings with the same LEADIN-
GONES fitness is mainly motivated by the preference over a wider exploration of
the search space rather than possibility to move nearer to the optimum. There-
fore, we can assume that the optimization process does not change significantly
in this setting while hugely simplifying the policy computation. We also note
that a similar assumption was made in the lexicographic setting to simplify
the notation when we decide not to accept transitions from y to  with same
LEADINGONES and ONEMAX fitness.

Under the strict standard selection, the computation is far easier and we
can follow the argument from Section 4.1.1. In particular, formula (4.3) still
holds with different transition probabilities. In particular, P((I,m) | (I,m))
corresponds only to the probability of not accepting a transition and P((I, u) |
(I,m)) is O for every u # m. However, these probabilities can still be computed
with the direct counting method we used before.

The same case can be adapted to build a policy for standard strict selection
in the n-dimensional space but we decided to focus on the two-dimensional
space and leave analysis of the n-dimensional space for further research.



Chapter 5

Empirical Results on
Enhanced State Spaces

In this chapter, we report the exact and simulated results of the policy proposed
in the previous chapter for the different settings described.

Implementation details

To produce the results presented in this chapter, we implemented the proce-
dures we described and will discuss in Python, making wide use of the libraries
numpy and matplotlib. The calculations carried out were quite heavy, so we
adopted some strategies to optimize our code. To optimize the computation
of fitness values for the LEADINGONES and ONEMAX functions, we employed
Python’s 1ru_cache decorator. This caching mechanism stores previously com-
puted results, significantly reducing redundant calculations when the same in-
put is evaluated multiple times. Specifically, for the LEADINGONES function,
the cumulative product of the input vector is cached to efficiently determine
the longest prefix of ones. Similarly, for the ONEMAX function, the sum of
the input vector is cached to avoid recalculation. This optimization is particu-
larly beneficial in iterative processes where these fitness functions are frequently
queried.

To further enhance computational efficiency, we use Python’s multiprocessing
library to parallelize computationally intensive tasks, such as evaluating fitness
values and updating state probabilities. The design of the algorithm decom-
poses iterations on fitness levels, mutation operations, and distances into in-
dependent tasks that are distributed among multiple processes. Specifically,
the function that calculates expected runtimes for each state is parallelized by
mapping its iterations across multiple worker processes.

However, in general, the computation of the exact runtime scaled exponen-
tially in the problem dimension n.

We run our simulations on the MCMeSU cluster of Sorbonne Université in
the standard computing server, which provided 32 cores (AMD EPYC Milan)
and 256GB DDR4 memory. All codes were run for 24 hours.

The code is provided for reproducibility at the present repository.

59
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5.1 Lexicographic Selection

5.1.1 Low-dimension

We start the discussion of empirical results by looking at a simple case that
explicitly represents the graph structure for n = 4. We represent the graph in
Figure 5.1 considering as nodes the states in the two-dimensional space. Note
that for low n (n < 8), we do not have differences in our policy developed
between for the two-dimensional state space and the n-dimensional. In the
figure, we represent the states (I,m) as nodes; we also indicate inside the nodes
the optimal k in square brackets and the expected optimal runtime. As edges
we represented the possible transitions with the associated probability reported.

Figure 5.1: Graph structure for n = 4.

The graph gives us some interesting insights on how the algorithm moves
in the search space under the lexicographic hypothesis. Even if the dimension
is low, it is already possible to appreciate some differences between states with
the same LEADINGONES fitness but different ONEMAX. In general, it seems
to be very advantageous for a states to have a direct transition to the target.
This is the case for external states, since the expected time is not greater than
n. All states for n = 4, with the exception of (0,2) and (1,2) have an optimal
expected runtime of n (or lower in (0,0)). Therefore, these two cases are the
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most interesting to analyze: in both states, the optimal radius is 2, which
means that the algorithm wants strongly to preserve the ones in the string,
and therefore, even if the LEADINCONES fitness is low, it does not flip too
many bits. It is also interesting to note how the incorporation of ONEMAX
information influences the optimal policy: a clear example is the states with
LEADINGONES fitness equal to 0. If ONEMAX fitness is also equal to 0, the
optimal strategy is obviously to flip n bits, while if it is equal to n — 1, it makes
sense to flip fewer bits, even only 1.

We already observed that there is no difference in the optimal policy with
full information (n-dimensional state space). From our computations the first
differences highlighted by our computation begin for dimension n = 8, where
we have that the string 01?03 is associated with an optimal k of 5 and 0%1%
is associated with an optimal k of 4, even if both strings have LEADINGONES
fitness of 0 and ONEMAX of 4. The optimal k associated with the state (0,4)
in the 2-dimensional state space is 5. Other differences are, e.g., when n = 10,
a radius of k = 6 is selected for 014, k = 8 for 0101203, and k = 7 for (0,4) in
two-dimensional state space.

It seems that the algorithm in general could have a slightly more conserva-
tive behavior when the ones are at the end of the tail. However, this different
behavior may be limited to some specific cases and not be relevant overall.

To validate our considerations and study the algorithm behavior, we calcu-
lated exactly the results for the lexicographic selection using the formula (4.5)
and the analogous for state space of dimension 1, 2 and n. We stated in Ta-
ble 5.1 the expected runtime of LEADINGONES in the growing dimension n,
using the optimal policies for three different state spaces. For results in column
LO we used the optimal policy obtained considering information on ONEMAX
fitness available only for selection and not for mutation adapting formula (4.6).

Dim (n) | LO | (LO, OM) X
2 1.500 1.250 1.250
3 3.125 2.375 2.375
4 5.500 4.375 4.375
) 7.857 6.491 6.491
6 11.511 8.946 8.946
7 14.197 11.549 11.549
8 18.748 14.368 14.365
9 22.031 17.248 17.248
10 27.234 20.289 20.287
11 30.337 23.393 23.393
12 37.156 26.63 26.629
13 40.306 29.914 29.914
14 46.758 33.282 33.279
15 50.941 36.747 36.743
16 61.910 41.237 40.236

Table 5.1: Expected time for lexicographic selection
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The results are very interesting and deserve some comments. We first no-
tice that in the lexicographic context we have a notable gain by also exploiting
information from ONEMAX fitness in mutation. The improvement is indeed de-
pendent on the policy state and not only on the lexicographic selection: adding
more information in the parameter policy seems fruitful in this case. However,
adding the information of the whole string x seems to improve the algorithm
only by a factor that is not greater than 1073. This phenomenon confirms
what we observed before: the differences in the optimal policies are limited in
cases and values, especially for low dimensions. However, we do not expect big
changes for higher n and therefore preferred to analyze in detail the optimal
policy for the two-dimensional state space. This is also motivated by the fact
that we can take advantage of the two-dimensional space to represent optimal
policies as heatmaps. Some of them are provided in Figure 5.2.

Figure 5.2: Heatmaps of optimal policies for lexicographic selection

First of all, we visually note the strong gain we have by adding the ONEMAX
dimension. In particular, if n = 16 we have that for LEADINGONES fitness of 0,
the algorithm will always choose a radius of 15 when policy information consists
only in LEADINGONES fitness, while adding information about ONEMAX makes
the policy far more nuanced, taking into account the strong differences from,
e.g., 0" and 01"~ . In particular, it is clear that from 0" we could jump instantly
to the target, while for 01"~!, the best choice is k = 1 and wait to flip the first
bit.

In general, it is easy to see that for higher LEADINGONES fitness it is normal
for the algorithm to be more conservative and flip only 1 bit: in these cases,
the one-dimensional policy models the optimal behavior well. However, the
main advantages of incorporating more information in our policy are given in
the earliest stages, with a lower LEADINGONES fitness, where the uncertainty
in the distribution of bits in the tail of the string is higher and the algorithm
takes advantage of a more risky behavior in lower ONEMAX situations and more
conservative when the ONEMAX fitness is higher.

We can also note some patterns in the heatmaps: first of all, we note that
there is a large region in the right-bottom, that is, with both high LEADINGONES
and ONEMAX fitness, for which the optimal policy is equal to 1. This is quite
intuitive, since, with lexicographic selection the algorithm tries to move in the
two-dimensional space to the lower-right, this means that in that region we are
closer to the optimum, and thus the algorithm trade-off between conserving
the ones found so far and flipping the remaining zeros tends to the conserva-
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tion once the algorithm has reached a higher fitness, either LEADINGONES or
ONEMAX.
Another pattern is monotonicity; we observe in the optimal policy:

o LEADINCONES monotonicity: growing LEADINGONES fitness, the optimal
radius becomes smaller;

e ONEMAX monotonicity: growing ONEMAX fitness, the optimal radius
becomes smaller;

¢ Lexicographic monotonicity: for lexicographically higher states, the cor-
responding radius is smaller, i.e. the algorithms always takes a non-
increasing radius in the optimization process.

It is obvious that the lexicographic monotonicity is a natural consequence
of the other two. The others reflect the monotonicity in the optimal policies we
have for RLS on fitness-based policy for LEADINGONES and ONEMAX, shown
in [15] and [20], respectively. The idea is quite intuitive, since it represents that
the algorithm becomes more conservative while we are nearer to the fitness.

Figure 5.3: Heatmaps of optimal expected runtime for lexicographic selection

We can also make some considerations on the expected runtime heatmaps.
We note that the higher times are obtained for states with either LEADINGONES
and ONEMAX fitness not too high. In these states, the algorithm cannot take
advantage of the risky behavior of lexicographical small states, neither of the
good positioning of states near the solution. In general, this suggests what
would be the good strategy for the algorithm that would be trying to move
away from those states with low fitness.

It is also interesting to note that for a sufficiently large ONEMAX fitness, it
seems that the LEADINGONES fitness no longer influences neither the optimal
policy, which becomes always equal to 1, nor the expected runtime. This further
confirms that our algorithm design is efficient and motivated in particular in
the first stages of the optimization process, when we can expect the fitness to
be lower.

5.1.2 High-dimension

As we see in Table 5.1, the exact analysis of the expected runtime is possible only
for quite low dimensions since, as we observed when presenting the algorithm
used, the number of operations is exponential in the dimension n. To overcome
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the problem of having results only for low dimensions, we can conduct a Monte
Carlo simulation, running for a certain number N of times the RLS algorithm
with a chosen policy, and count for each iteration the number of iterations.
The empirical mean and variance obtained from the number of evaluations for
each simulation are consistent estimators of the real mean and variance of the
runtime. For more details, refer to the Appendix D. The empirical estimation of
the standard deviation gives us information that is not considered in the exact
computation of the expected runtime. It is indeed relevant for the algorithm,
since it gives us a measure of how much the runtime of the algorithm can
change. In particular, a reinforcement learning agent such as the one used
in [7] can benefit strongly from a lower standard deviation: it is thus useful to
see how integrating more information in the policy design can also affect this
measure.

The problem of this approach is that to conduct a simulation we need to
know before the policy we wish to apply. This is actually possible for the
one-dimensional state space, for which we can take the policy from the for-
mula expressed in [7] that corresponds to the state-of-the-art policy of RLS on
LEADINGONES. We would like to compare the results with a two-dimensional
policy. Since, from results in low-dimension, we observed that the n-dimensional
state space seems not to provide great performance improvement and the infor-
mation of policies on it are limited, we will focus only on the two-dimensional
state space.

Therefore, we developed an heuristic policy defined on the two-dimensional
state space. Since there seemed to be some quite evident patterns in the two-
dimensional optimal policy calculated exactly for low dimensions, we tried to
reproduce these patterns and tested the goodness of the heuristic policy on
the expected runtime for the low dimensions for which we calculated the exact
policy.

To build the heuristic policy, we observed that for LEADINGONES fitness
of 0 and low ONEMAX fitness, the optimal policy was always to flip n bits.
We then noticed that the state (n — 1,7 — 1) always has, in the cases we
computed, an optimal radius of k. = n — 1. Lastly, we noted that states with
LEADINGONES fitness of n — 1 and high ONEMAX fitness had rapidly the value
of 1 as optimal radius. We then filled the policy matrix with some uniformity
using the monotonicity hypothesis.

Formally, we build the policy matrix K. as follows:

n fori:L%J,...,n,
Kc(n,i) := { uniformly spaced fromn —1to 1 fori= ["31],....,n— 2],
1 for i >n — | 2],
n—1 for j =n—1,
K.(n—1,7) := < uniformly spaced fromn —1to 1 for j =n — L”T‘HJ, co,n—1,

1 for all other j,
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n+1

K. (l,1) :=uniformly spaced from values[l — 2] to 1 for [ =2,...,n— | 3 | -2
1
andi=0,...,n— Ln;_ |

where:

values := a linearly spaced sequence from n — 2 to 2,

and the starting value for each row [ in the range 2 < I < n — 2] — 2 is
determined by values|l — 2], i.e. the I — 2-th element of the vector values.

It is more intuitive to show some heatmaps of the policy developed, com-
pared also with the optimal policies we computed exactly. We provided some
of them in Figure 5.4.

Figure 5.4: Heatmaps of heuristic policy

First of all, we compared the expected runtime calculated exactly for the
heuristic policy on low dimensions with the results we already computed and
summarized it in Table 5.2.

Dim (n) | LO | (LO, OM) X heuristic
2 1.5 1.25 1.25 1.25
3 3.125 2.375 2.375 2.375
4 5.5 4.375 4.375 4.594
) 7.857 6.491 6.491 6.668
6 11.511 8.946 8.946 9.125
7 14.197 11.549 11.549 11.79
8 18.748 14.368 14.365 | 14.535
9 22.031 17.248 17.248 | 17.582
10 27.234 20.289 20.287 | 20.634
11 30.337 23.393 23.393 | 23.635
12 37.156 26.63 26.629 | 27.037

Table 5.2: Expected time for lexicographic selection with the heuristic policy

As we see from the table, the heuristic policy seems to work very well,
guaranteeing values similar to the ones of the optimal exact policy with two-
dimensional state and far better than the one-dimensional results. In particular,
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the expected runtime seems to proceed in a higher dimension with a similar
order of magnitude and thus can be used as a good approximation also for
higher dimensions.

We used therefore the heuristic policy to approximate the algorithm be-
havior in high dimensions, comparing it with the fitness-based policy. Selected
results of the expected runtime along with the corresponding standard devia-
tions are stated in Table 5.3. The complete results are reported in Appendix E.

n LO Heuristic Improvement
10 27.929 + 15.160 20.369 + 11.564 27.08%
20 83.052 + 35.401 56.817 4+ 24.935 31.58%
50 | 365.279 £+ 113.261 | 189.796 £ 70.485 48.06%

70 | 686.021 + 201.404 | 322.379 £ 107.782 52.99%
99 | 1484.031 £ 357.983 | 616.595 £ 161.838 58.47%

Table 5.3: Simulated results for lexicographic selection and large problem di-
mensions

In the table, we simulated the results up to dimension n = 99 due to com-
putational limits. The results deserve several considerations. The first one
concerns the expected runtime: as we can see, exploiting more information in
the policy, as is done by the heuristic policy, leads to a notable advantage in the
expected runtime. In the third column, we report the percentage advantage of
using the heuristic instead of the optimal fitness-based policy. We see that the
relative advantage is not only consistently high - and higher than the standard
deviation - but also grows growing the dimension.

Figure 5.5: Boxplots for simulations of lexicographic RLS

We note, also observing the boxplots reported in Figure 5.5, the standard
deviation is consistently lower when using the heuristic policy than when using
the fitness-based one. However, this effect is not observed in the relative stan-
dard deviation (the standard deviation over the value of the empirical mean)
reported in columns four and five of the Table E.1. In this case, the values are
similar, with the relative value for the one-dimensional policy being consistently
smaller. However, we notice that the relative standard deviation decreases for
both policies as n grows. In general it seems that for similar values of expected
runtime the corresponding standard deviation is similar: obviously this is noted
by looking at different dimensions in order to take in account similar expected
runtime values for the two policies.
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In Table 5.4, we computed the ratio of the expected runtime obtained with
the fitness-based and heuristic policy as in Table 5.3 divided by n? and nlogn,
since, as we saw in previous chapters, we knew that the unary unbiased com-
plexity of RLS on LEADINGONES is ©(n?) and on ONEMAX is ©(nlogn). From
Table 5.4, it is clear that our solution is much faster than the state-of-the-art
for the RLS on the LEADINGONES problem. In particular, it is interesting to
note that for both policies the value of this ratio becomes monotonically smaller
as n grows: this means that the algorithm is faster than ©(n?), thus the unary
unbiased complexity for RLS on LEADINGONES no longer applies with the lex-
icographic selection. However, it is interesting to note the normalization by
nlogn. In this case, the ratio increases, growing n for the fitness-based policy,
but remains almost stable for the heuristic. Therefore, the fitness-based policy
is slower than ©(nlogn), the unary unbiased complexity of ONEMAX, but the
heuristic seems comparable with this bound. It is indeed interesting to note
that we have a significant improvement in the runtime dependent on the policy
selected, even in terms of asymptotic rate.

n LO Heuristic I;L—? Heﬂsm n{:gn Hs‘félgbgc
10 | 27.929 20.369 | 0.2793 | 0.2037 | 4.0301 | 2.9413
20 | 83.052 56.817 | 0.2076 | 0.1420 | 5.9931 | 4.1037
50 | 365.279 | 189.796 | 0.1461 | 0.0759 | 7.5483 | 3.9244
70 | 686.021 | 322.379 | 0.1400 | 0.0658 | 7.8452 | 3.6870
99 | 1484.031 | 616.595 | 0.1514 | 0.0630 | 8.3445 | 3.4677

Table 5.4: Simulated results for lexicographic selection and large problem di-
mensions with normalized columns

A possible objection that follows the observation that the heuristic policy
has a runtime comparable with the ONEMAX complexity is that the algorithm
with lexicographic selection simply tries to maximize ONEMAX regardless of
LEADINGONES fitness. However, we can easily disprove this objection by sim-
ulating the algorithm using the radius from the optimal policy for ONEMAX
solving LEADINGONES with lexicographic selection. The results are stated in
Table 5.5.

We see from the results that even for small dimensions, the ONEMAX opti-
mal policy does not lead to an execution runtime near to our heuristic policy.
Even if it is effectively faster than the policy based solely on LEADINGONES
fitness, it is closer to it than how close it is to the policy that considers both
LEADINGONES and ONEMAX for mutation.

Moreover, it is clear from looking at the optimal two-dimensional policies
that it also differentiates states with the same ONEMAX fitness but different
LEADINGONES. Therefore, we can conclude that in the lexicographic setting,
the algorithm works faster than the standard setting regardless of the state
space chosen and that our heuristic policy, which is based on a two-dimensional
state space, improves both the optimal policy based solely on LEADINGONES
fitness and the one based only on ONEMAX fitness.

However, the fact that the unary unbiased complexity bounds for LEADIN-
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Dim (n) LO H. OM
2 1.521 £ 1.519 1.735 £ 1.653 1.285 £+ 1.46
3 3.079 £ 2.849 2.397 £ 2.565 2.443 + 2.554
4 5.424 £ 4.370 4.435 £ 4.157 4.744 £ 3.947
5 8.064 + 5.631 6.477 £ 4.810 6.543 + 5.311
6 11.027 + 7.388 9.137 + 6.276 9.228 £ 7.615
7 13.751 £ 8.729 | 11.402 £ 7.302 | 13.107 + 11.509
8 18.476 £+ 11.109 | 14.413 £ 9.253 | 16.781 £ 18.901
9 21.882 £ 12.419 | 18.415 £ 10.473 | 19.915 + 18.067
10 27.929 £ 15.160 | 20.369 £ 11.564 | 30.152 + 69.686
11 30.574 4+ 14.944 | 23.619 £ 12.446 | 27.066 £ 29.701
12 36.457 £+ 18.309 | 27.685 £ 14.463 | 31.036 £ 29.386
13 39.183 £ 18.929 | 31.704 £ 16.737 | 37.151 £ 36.638

Table 5.5: Simulation for lexicographic selection with OM optimal policy

GONES no longer hold makes our result less aligned with the current literature
on LEADINGONES. So, it is also interesting to study the results in the standard
selection setting, which will allow us to better understand what influences and
under which conditions the algorithm behavior.

5.2 Standard Selection

In this section, we will present results from the standard selections setting. To
focus on comparison with previous literature results, we decided to analyze the
algorithm behavior without strict selection and use the near-optimal policy we
developed in Section 4.2. We present at the end of the section an overview of
the results in the strict standard setting but we will leave a thorough analysis
for future research.

5.2.1 Low-dimension

We already observed in the previous chapter that an approximation of the
optimal policy can be done for the two-dimensional state space, but it is com-
putationally very costly since it requires one to solve a linear system of n—1—1
equations for each LEADINGONES fitness [. The exact computation is therefore
possible only for very low dimensions; in this case we managed to do it only for
n < 7. We report the results in Table 5.6.

First of all, we note that, as expected, the expected runtime are much larger
than the ones obtained with lexicographic selection. So, the first conclusion we
draw is that changing the selection mechanism has a strong influence on the
expected runtime and a first improvement of the algorithm is on the selection
level.

Furthermore, even from these few results it seems that incorporating also
ONEMAX information in the mutation policy improves the expected runtime
of the algorithm by a certain percentage advantage. An improvement was ex-
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Dim (n) | LO | (LO, OM) | % Improvement I;L—(Q) (LO%J*QOM)
2 1.5 1.125 25.0% 0.3750 | 0.2813
3 3.5 2.375 32.14% 0.3889 | 0.2639
4 6.0 4.448 25.87% 0.3750 | 0.2780
) 9.667 7.463 22.79% 0.3867 | 0.2985
6 13.667 11.488 15.96% 0.3796 | 0.3191
7 18.875 16.435 12.94% 0.3837 | 0.3354

Table 5.6: Expected time for standard selection

pected, since a two-dimensional state space differentiates cases that effectively
require very different strategies, such as states (0,0) and (0,n — 1). However,
it is difficult to estimate the impact of additional information only from these
low-dimension values and extend conclusions on higher dimensions. As we saw,
in addition, the normalization of the two-dimensional policy by n? provided in
column 6 of Table 5.6 may grow as n becomes bigger, with decreasing improve-
ments of the two-dimensional policy. This is plausible considering the fact that,
growing n, the region where it is optimal to flip only 1 bit becomes larger, and
thus the information given by the ONEMAX fitness becomes less relevant.

We can delve deeper in the policy adopted to better understand the behavior
of the algorithm. We provide some heatmaps in Figure 5.6

Figure 5.6: Heatmaps of two-dimensional policies for standard selection

The first thing we note is that in the standard selection framework we have
less clearer patterns. In particular, we no longer have monotonic policies, nei-
ther in LEADINGONES, nor in ONEMAX fitness. We then have some unexpected
patterns, such as the optimal radius of n for states of (0,n — 1) and not clear
values in the central states. However, in general, some of the behavior seems
similar, with a prevalence of ones on the lower right of the policy and of high
values (such as n) on the upper left. In general, the possibility for the algorithm
to lower its ONEMAX fitness to move to a faster state makes it more difficult
to model.

We can also study the expected runtime heatmaps to have ideas of possible
good strategies of the algorithm. We provide some of them in Figure 5.7.

In this case, the patterns seem similar to the lexicographic case, with a gen-
erally high execution runtime for states with medium values of LEADINGONES
and ONEMAX fitness. This suggests us that an optimal strategy will try to
move away as possible from this region and instead move on the border states,
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Figure 5.7: Heatmaps of expected runtime for standard selection and two-
dimensional policy

i.e. the ones with or very low LEADINGONES or very high ONEMAX.

5.2.2 High-dimension

Similarly to the lexicographic setting, we tried to obtain results for high di-
mensions through Monte Carlo simulations with a predefined policy. For the
one-dimensional state space, as before, we already knew the optimal policy,
which is the one in the paper [7] and we applied it. For the 2-dimensional
state space we tried to apply the heuristic developed in the previous section.
Selected results are stated in Table 5.7, while the complete table can be found
in Table E.2 in Appendix E.

n LO Heuristic Improvement
10 38.878 £+ 23.354 34.238 + 19.830 13.57%
20 | 159.806 4+ 63.532 151.438 + 61.158 5.53%
50 | 970.620 + 254.967 | 960.984 + 234.036 1.00%
73 | 2080.514 + 437.115 | 2077.114 + 462.841 0.16%

Table 5.7: Simulated standard results

We note that the results of the heuristic are not satisfactory: it guaran-
tees in general better results than the one-dimensional optimal policy, since it
is generally faster than the state-of-the-art. However, its improvement is not
statistically relevant since it is too small compared to the standard deviation.
The development of a better heuristic policy could be a research direction to
improve the state-of-the-art on the standard problem; however, as we saw, the
patterns of the exact policies we developed in Figure 5.6 do not give clear in-
sights. However, computation of a higher dimension using more computational
power may be helpful to gain more insight into the problem.

We may conclude, at the end of this section, that we developed three levels
of improvement on the state-of-the-art of the problem: one related to mutation,
one to selection, and one to mutation and selection combined. The first was not
statistically relevant for high dimensions and still needs further study to verify
whether asymptotically we can effectively expect an improvement. However,
the change in selection and the two-dimensional policy under the lexicographic
assumption provide a clear and relevant improvement in the state-of-the-art,
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suggesting that when selection and mutation work together, exploiting both
more information, the improvement is notable. This insight could be extremely
useful for studying control policies of other, more practical algorithms on real-
world problems.

5.2.3 Strict Standard Selection

For the sake of completeness, we present in this section results on the strict
standard setting, which provide some further interesting insights.

The strict selection assumption allows to significantly simplify the compu-
tation and therefore to compute results for dimensions n > 7 and, in particular,
for dimensions up to n = 16 bridging the gap with the lexicographic setting.
The results obtained are presented in Table 5.8, compared with the expected
runtime for fitness-based policy obtained from literature without strict selection
(0.39n2).

Dim (n) | LO | (LO, OM) | Improvement
2 1.560 1.250 19.87%
3 3.510 2.375 32.34%
4 6.240 4.375 29.89%
5) 9.750 7.630 21.69%
6 14.040 10.780 23.21%
7 19.110 14.783 22.61%
8 24.960 19.629 21.41%
9 31.590 25.530 19.20%
10 39.000 31.737 18.61%
11 47.190 38.575 18.24%
12 56.160 46.423 17.31%
13 65.910 55.265 16.15%
14 76.440 64.194 16.00%
15 87.750 74.006 15.66%
16 99.840 84.919 14.96%

Table 5.8: Expected time for strict standard selection

The results are very interesting since they suggest a consistent improvement
in exploitation of further information: the improvement seems to be in partic-
ular in low dimensions and to reduce while n grows bigger. Even with low data
this phenomenon seems plausible since with growing n the percentage of states
for which the optimal radius is 1 becomes bigger and therefore the influence of
exploiting more information reduces. It is not possible, however, to establish
whether this improvement becomes 0 for n — oo or if the policy developed still
guarantees improvement asymptotically.

We also present some of the obtained policies in Figure 5.8.

It is interesting to note that we find very similar patterns we had in the
lexicographic setting, with also monotonicity of the policy. For this reason, we
did not develop a new heuristic for this setting and decided not to focus on
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Figure 5.8: Heatmaps of optimal policy for strict standard selection

further simulations.

The strict selection mechanist, however, highlighted an interesting behavior
and we aim to delve deeper in the questions raised in this section in future
research.

5.2.4 Limited Portfolio

In this last section, we provide the results of computation of the expected run-
time for limited portfolio of search radii. We choose to provide computational
results for the setting we focus on the most, which is the lexicographic with two-
dimensional state space. Taking inspiration from the paper [7] in which limited
portfolios are used to train the RL-agent, we computed the exact runtime for
the following portfolios.

« powers_of_two: {2¢| 2! < n};
o initial_segment with 3 elements: [1..3];

o evenly_spread with 3 elements: {i-[n/3] +1 |7 € [0..2]}.

Selected results are in Table 5.9.

Dim (n) | LO | (LO, OM) | powers_of_two | initial_segment | evenly_spread
2 1.5 1.25 1.25 1.25 1.75
3 3.125 2.375 2.75 2.375 2.375
4 5.5 4.375 4.625 4.687 4.687
5 7.857 6.491 6.87 7.087 7.087
6 11.511 8.946 9.537 9.684 9.261
7 14.197 11.549 12.205 12.471 12.037
8 18.748 14.368 14.574 15.306 14.906
9 22.031 17.248 17.589 18.318 17.693
10 27.234 20.289 20.683 21.413 20.81
11 30.337 | 23.393 23.908 24.6 24.028
12 37.156 26.63 27.203 27.903 27.1
13 40.306 | 29.914 30.58 31.247 30.482
14 46.758 |  33.282 34.024 34.694 33.938
15 50.941 36.747 37.53 38.214 37.329
16 58.558 | 40.237 40.469 41.772 40.9

Table 5.9: Expected time for lexicographic selection with different portfolios
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In the limited portfolio setting, the computation is made easier by the fact
that we have less values of k to try to find the optimal. However, this opera-
tion was performed in parallel in our code; therefore, we do not have a notable
improvement and we managed to compute, also in this case, the results for di-
mensions up to n = 16. In these low dimensions, however, the results regarding
expected runtime are not particularly interesting since they are all very similar
to the two-dimensional optimal policy runtime. It is more interesting, there-
fore, to visualize through heatmaps some of the optimal policies for limited
portfolios. Selected policies are provided in Figure 5.9.

Figure 5.9: Heatmaps of optimal policy for lexicographic selection and limited
portfolio

We can note that the optimal policy exploits the available portfolio the
most if it has a wider range of possible values: in fact, the initial segment
policy seems the one that exploits the least the portfolio, using almost only
the 1 and 3. In general, it confirms the hypothesis made in [7], where it is said
that having some larger search radii is more beneficial than covering exclusively
small search radii. However, it seems better to have more than one single small
search radius. Further studies on the limited portfolio setting could build upon
advancements in the development of optimal dynamic policies.
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Conclusion

Black-box optimization plays an important role in many real-life applications;
the design and benchmarking of efficient algorithms is a fruitful research direc-
tion with many open problems, since a more theoretical approach to the field
is not yet developed enough [79].

In this thesis, we addressed the general problem of parameter control in
black-box optimization algorithms, following the idea that a good parame-
ter policy could strongly affect algorithms performance and that theory-based
benchmarking could inspire design choices of new algorithms. In the first part
of the thesis, we provided a wide review of the existing literature: in Chapter 2
we presented motivations around black-box optimization in general and genetic
algorithms in particular. We then introduced the concept of black-box com-
plexity, as a way to model the best runtime for black-box algorithms on classes
of problems, showing how different choices of algorithm class can lead to dif-
ferent complexity concepts. We then delved into drift analysis, a set of tools to
provide runtime bounds on black-box algorithms, and we presented the general
problem of algorithm configuration. In Chapter 3, we then discussed the appli-
cation of these techniques on two important benchmark algorithms, RLS and
(141) EA, solving two equally important benchmark problems, LEADINGONES
and ONEMAX. We presented complexity results and how the algorithms could
benefit from parameter control policies. In this chapter, we also discussed the
results from [7] where for the first time an RL agent was used to control the
radius parameter in RLS on LEADINGCONES.

In the paper, the RL agent showed some generalization limits that sug-
gested the need for a better understanding of the best parameter policy in the
problem discussed. Our contributions mainly concerned this point. We aimed
to enhance parameter control policies in enhanced state spaces that included
more state information. In particular, for the first time, we studied the behavior
of RLS on LEADINCONES considering state spaces that also included informa-
tion on ONEMAKX fitness (two-dimensional state space) and information on the
whole bit-string (n-dimensional state space), inspired by some promising results
in [11].

We presented our contributions in Chapter 4, where we focused on two set-
tings: first we considered a lexicographic selection, where the algorithms accept
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a new solution if it improves LEADINGONES fitness or if it maintains LEADIN-
GONES fitness but improves ONEMAX, and then we took into account the
standard selection based solely on LEADINGONES fitness. In the lexicographic
setting, we developed exact optimal policies on the two-dimensional state space
and on the n-dimensional space. Since the computation of the optimal policy
was computationally heavy, we also developed a heuristic policy that we tested
in higher dimensions. In the standard setting, we developed an approximated
policy only for the two-dimensional state space. We tested all our policies on
LEADINGONES and compared them with the state-of-the-art, developed in [15],
which was based on a one-dimensional state space and only took into account
LEADINGONES fitness.

In Chapter 5, we presented empirical results. In the lexicographic setting,
our policies outperform the state-of-the-art. We noted improvement on two lev-
els: first, adding the lexicographic selection but maintaining a one-dimensional
state space policy, then a further improvement — both in terms of expected
runtime and standard deviation — is gained through a two-dimensional state
space policy. However, the n-dimensional policy did not seem to improve sig-
nificantly the two-dimensional one. In the standard setting, on the other hand,
considering also information on ONEMAX fitness seemed to lead to a minor
improvement and it is not clear if this improvement can be statistically signi-
ficative asymptotically.

Our results highlighted the importance of further research on the problem:
the study of enhanced state spaces for RLS policy on LEADINGONES has just
begun and this thesis highlighted several questions. First, a further study of the
n-dimensional state space policy is required, both in the lexicographic and in
the standard setting. Moreover, a heuristic policy that captures more patterns
of the optimal policy could further improve the results obtained, in particular
in the standard setting where the unclear behavior of our approximated policy
did not allow us to develop a specific heuristic. Furthermore, other state spaces
can be studied, for example delving deeper in the limited portfolio setting.

Given our motivation raised by [7], our results can be used to benchmark
the behavior of an RL agent for the dynamic algorithm configuration of RLS
on LEADINGONES, testing it on the enhanced state spaces we considered and
comparing them with our benchmark.

This initial exploration of enhanced state spaces in parameter control opens
the door for further research on various algorithms with greater practical rele-
vance. For instance, future work could focus on refining dynamic algorithm con-
figuration policies for the RLS variant of the (1 + (A, A)) genetic algorithm [13]
and extending these techniques to CMA-ES, a sophisticated genetic algorithm
widely used in real-world applications. Investigating different state spaces has
the potential to significantly advance the field of dynamic algorithm configura-
tion [1], a promising research direction that leverages reinforcement learning to
address parameter control challenges.

Beyond evolutionary algorithms, the impact of improved parameter control
extends to the broader field of Automated Machine Learning (AutoML), where
building learning-inspired control policies is still a major challenge. AutoML
aims to automate the design and tuning of machine learning models, reducing
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the need for human expertise and extensive trial-and-error experimentation.
Developing adaptive parameter control methods that adjust hyperparameters
dynamically, without requiring exhaustive pre-tuning, could make AutoML sys-
tems more efficient, scalable, and accessible. This is particularly relevant in
deep learning, where hyperparameters such as learning rates, batch sizes, and
regularization terms can significantly influence model performance. By integrat-
ing dynamic algorithm configuration into AutoML frameworks, future research
could help bridge the gap between theoretical optimization techniques and real-
world machine learning applications, making model training more adaptive and
resource-efficient.

These advancements have the potential to make optimization techniques
more applicable across diverse domains, from evolutionary computation to deep
learning and beyond. As parameter control methods continue to evolve, they
could play a crucial role in enhancing automated decision-making systems, re-
ducing computational costs, and improving the generalization capabilities of
machine learning models.
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Appendix A

Evolutionary Algorithms for
Continuous Optimization

Evolutionary algorithms are also widely used to address continuous optimiza-
tion problems, namely optimization problems in the form of (A.1) where the
search space S is continuous.

x* = argmin f(z) (A.1)
zE€S

The study of the field conducted to the development some of the most
popular evolutionary algorithms. Since we referred from time to time to them
in our analysis, we present here three among the most continuous evolutionary
algorithms: Metropolis Algorithm, Simulated Annealing (SA) and Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES).

Metropolis algorithm [62] can also be considered a local search algorithm:
it looks iteratively for solutions through random offspring generation and se-
lection. New candidates are always accepted if they improve the fitness of the
current best solution, but are also accepted with a probability exponentially de-
creasing with distance from the current best fitness even if they do not improve
the current best. The structure of the algorithm is summarized in Algorithm 12.

Simulated annealing [53, 66] is a more elaborate version of the metropolis
algorithm. In this case, the optimization process takes advantage of a dynamic
choice of the acceptance probability. To do so, a parameter t, called temper-
ature, is introduced which controls the acceptance of lower fitness values. In
particular, the parameter is chosen to follow a time-dependent policy, reduc-
ing the probability over time (measured in iterations), in order to explore the
search space broadly in the first phases to avoid local optima and then focus
more on exploiting the best solution so far to reach a global optimum. The
algorithm is also one of the most well-known examples of advantages given by
a dynamic parameter policy. In Algorithm 13 the simulation annealing scheme
is summarized.

Lastly, CMA-ES [42] is a very popular evolution strategy that was devel-
oped in the last few years. The algorithm is quite complex and elaborated; the
fundamental idea is to generate an offspring of A individuals from a multivari-
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Algorithm 12 General scheme of Metropolis algorithm

1: Initialize the current point x = i,
2: Initialize the best solution found so far: Zpest = = and Ynest = f()
3: while stopping criterion not met do

4: for a fixed number of iterations do

5: Generate a new candidate point ' randomly from the proposal dis-
tribution

6: Evaluate v’ = f(2')

7 if ¥ < f(z) then

8: Accept the new point: x = 2’

9: else

10: Compute the acceptance probability p = e~ ¥ ~f())

11: Draw a random number u ~ U(0, 1)

12: if v < p then

13: Accept 2/, ie., x = 2’

14: end if

15: end if

16: if f(z) < Ypest then

17: Update the best solution: Zpest = & and ypest = f()

18: end if

19: end for

20: end while
21: return Tpest and Ypest
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Algorithm 13 General scheme of simulated annealing

1: Initialize the current point x = z;, and temperature t = t;,

2: Initialize the best solution found so far: Zpest = = and Ypest = f()
3: while stopping criterion not met do

4: for a fixed number of iterations do

5: Generate a new candidate point 2’ randomly

6: Evaluate y' = f(2/)

7 if ' < f(z) then

8: Accept the new point: z = 2/

9: else

10: Compute the acceptance probability p = e~ W' =f@)/t
11: Draw a random number u ~ U(0, 1)

12: if u < p then

13: Accept o/, ie., z = o

14: end if

15: end if

16: if f(z) < Ypest then

17: Update the best solution: Zpest =  and yYpest = f ()
18: end if

19: end for

20: Decrease the temperature ¢ according to the annealing schedule (e.g.,

t = at, where a < 1)
21: end while
22: return Tpest and Ypest
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ate normal, where the mean and the covariance matrix are updated based on
the information gained in previous iterations through weighted selection mech-
anisms. We will not delve into details, but we reported the general structure of
the algorithm in Algorithm 14.

Algorithm 14 General structure of CMA-ES

1: Set parameters A\, w; for ¢ = 1,...,u, ¢, ds, cc, c1, and ¢, according to
Table 1

2: Initialize evolution paths p, = 0, p. = 0, covariance matrix C' = I, and
generation counter g =0

3: Choose distribution mean m € R™ and step-size ¢ € Rso based on the

problem
4: while termination criterion not met do
5: g+—g+1 > Increment generation counter
6: for k=1,...,Ado > Sample new population of search points
T 2L~ N(O, I)
8: yp = BDz ~ N(O, C)
9: z = m+ oy, ~ N(m, 0?C)
10: end for
11: Selection and Recombination:
12: Gw = > jwiy; where Y1 jw;=1landw; >0fori=1,....p4
13: m < m—+ oYy > Update mean
14: Step-size Control:
15: Po (1 - Co)po + v CU’(2 - Ca):“e{fc_l/ggw
16: 0 4 0 exp (2—‘; (Ilpo |l /E[N(0, I)|| — 1)) > Adapt step-size
17: Covariance Matrix Adaptation:
18: Pe < (1 - Cc)pc + Cc(2 - Cc)Heffgw
19: Wik < qp; - (1 if w; > 0 else n/HCil/Qyin) > Rank-one update
weights

200 C (I+cithe —c1 = ¢ X w™)C + cipepy + ¢ iy wi™yiyl >
Covariance matrix adaptation

21: end while

22: return m and o > Final mean and step-size as solution




Appendix B

Selected Proofs

B.1 Proofs from Section 2.5

Proof of Theorem 11.

Proof. (i) Since we are only interested in T, we can assume that X; = 0 for
every T > 0 and therefore X; > 0 if and only if T' > t.
We rewrite the condition on the drift as

EXi1 | Xi =] <E[Xy | Xy =s]—-9, Vse8\{0}
For the previous observation, we can write
EXip1 | T >t <E[X |T>t]—9¢
By the law of total probabilities, we have that

E[X,] = P(T > OE[X, | T > t] + P(T < )E[X, | T > 1]
—P(T > OE[X, | T > 1]

From analogous argument and integrating the previous formula,

E[Xt+1] = ]P(T > t)E[Xt+1 ’ T > t]
<P(T > (X, | T > 1] - 5)
E[X;] — 6P(T > t)

In particular,

SP(T > t) < E[X,] — E[X¢11]

The claim follows then by considering the sum of the series of all possible
values of t.
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lim (E[Xo] — E[X,11])

T—00

OE[T] = TIEEOZT:‘;P(T >t) < TILII;O ZT:(E[Xt] — E[X¢41])
t=0 t=0

< E[Xo]
(B.1)
(73) All the equations with the exception of (B.1) hold in reverse. (B.1)
becomes

OE[T] = lim i SP(T > t) > lim (E[Xo] — E[X,11])
t=0

T—r00
If P(T > 1) does not converge to 0, then E[T] = Y72 P(T > t) = oo and (i)
holds trivially. Otherwise, P(T" > ¢) — 0 and lim,_,» E[X;11] = 0. O

Proof of Theorem 12.
Proof. The main idea is to rescale the process X; by the function
min S 1 .
o(s) o= 4 Fom) T Jsun 402 8 2 Smin
T 0 <5 < smin

h(Smin) ’

Since h is increasing, the integral is well-defined. We also note that g is strictly
increasing. We claim that for all s € § \ {0} and all r > 0,

sS—T

os) ~o(r) = 5]

To prove it we consider three cases: first, if s > r > suyin,

s 1 s 1 §—=r
9(s) = g(r) :/T W) Z/T ™ = )

If r > s > smin, then

1 r—s

r 1 r
g(r) — g(s) :/s h(a)d‘fg/s )% = his)

The third case is s > spin > 1 > 0:

Smin s 1 r Smin — T S — Smin
o) =g = ok [ e = s > SR S
> S—7T
~ h(s)

We now consider the stochastic process (Y:)¢>0 where Y; := g(X;). For all

s € 8\ {0},

E[Y: = Yig1 [ Y2 = g(s)] = E[g(Xt) — 9(Xe41) | 9(Xi) = g(s)]
Xt — X

= El h(Xt)

| Xy =s] =
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The claim then follows the additive drift applied to the process (Y)¢>o0. O

B.2 Proofs from Section 3.2

Proof of Theorem 34.

Proof. First, we denote by A; the time required to find an improvement given
that the initial solution has fitness n — i.

We observe that A; follows a geometric distribution of parameter the prob-
ability of improvement P[LO(y) > LO(x)]. Therefore P[f(y) > f(z)] =
(1 — pp_i)" "pp_; and the expected time is

1 1
E[A] = = : B.2
A= B0 > F@] T =) P (B.2)

We then observe, using the law of total distributions and the assumption

that those in the tail are uniformly distributed, that

E[T] = 5 3 E[4] (B.3)
=1

From the combination of (B.2) and (B.3) and some simple algebra, it follows
the claim. O

Proof of Theorem 35.

Proof. We start assuming a uniform distribution of ones in the tail, which means
that z;, for j € [i + 2..n], are random variables i.i.d. uniformly distributed in
{0,1}.

We then denote with T for every i € [0..n] the runtime of the algorithm
when starting with a random search point of fitness exactly <. With Timnd we
then denote the runtime starting with a search point of fitness at least 4; in this
case also x;41 is a random variable.

It is immediate to observe that 70 = T4, We then exploit the fact that

T? = Geom(q;) + Tr4, Vi<n

that follows the observation that the waiting time for flipping the ¢ + 1-th bit
follows a geometric distribution with parameter the probability ¢; of flipping
the ¢ + 1-th bit during an iteration of the algorithm.

It follows

Trend = X1 + (1 — X,)Trend
= X;(Geom(q;) + Tirirlld) . Xi)ﬂrfrlld
= X,;Geom(q;) + T7249
where X is a uniform binary random variable independent from any other

randomness of the other distributions.
By induction and observing that T = Tgand it follows the claim. O



Appendix C

Markov Decision Processes

Markov decision processes (MDPs) are classical formalizations of sequential de-
cision making, where action influences not just the immediate reward but also
subsequent states and actions, and thus future rewards. They are often used to
model sequential decision making, in particular in the context of reinforcement
learning (RL). They are also the framework used for dynamic algorithm con-
figuration (DAC) presented in Section 2.6.2. Reviews of the topic can be found
in [80, 73].
Formally, we can give the following definition.

Definition 40. A Markov decision process (MDP)is a tuple (8, A, p(y | z,a),r(z), 7o),
where 8 is the state space, A is the action space, p(y | z,a) is the transition
probability (y,z € 8§,a € A), r(z) is a reward function and 7 is the initial state
distribution.

Informally, the setting considered is that of the interaction of an agent with
an environment. The interaction occurs in time steps ¢ € N. The initial state
sp € 8 is determined by the initial state distribution my. The environment in
each time step is described by the state s; € 8, which determines the choice of
the action ay, the reward in the next step 741 € R, and the new state sy41 is
reached following the probability of transition p(- | s, a;).

The MDP and agent together thereby give rise to a sequence or trajectory
that begins like this:

SOv AOv Rla Sla Ala R27 525 A25 R37 s

In a finite MDP, the sets of states, actions, and rewards (8, A, and R) all
have a finite number of elements. In this case, the random variables R; and
S; have well-defined discrete probability distributions dependent only on the
preceding state and action.

In a Markov decision process, the probabilities given by p completely char-
acterize the dynamics of the environment. That is, the probability of each
possible value for s; and r; depends on the state and action immediately pre-
ceding, s;—1 and a;—1, and given them, not at all on previous states and actions.
This is the Markov property of MDPs.
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In general, we seek to maximize the expected return, where the return,
denoted Gy, is defined as some specific function of the reward sequence, with
a discount factor « that describes how much we value immediate rewards over
long-term gains:

T
Gi=Rip1 +YRipa + YRz + - =Y Y Ryyit,
k=0
where v € [0,1] and T € NU {oc}.
Obviously,

Gy = Ris1+7yRipo+7* Riys+ - = R +y (Rigo + YRigs + -+ ) = Rip1 +7Gra.

Solving MDPs usually involves estimating value functions that estimate how
good it is for the agent to be in a given state defined in terms of expected return.
Of course, the rewards the agent can expect to receive in the future depend on
the actions it will take. Consequently, value functions are defined with respect
to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each
possible action. If the agent follows the policy 7 at time ¢, then m(a | s) is the
probability that A; = a if S; = s.

The value function of a state s under a policy 7, denoted v.(s), is the
expected return when starting in s and following 7 thereafter. For MDPs, we
can define v, as:

vr(8) :=E[Gy | Sy = 5] = Er [Z YRRy a1 | S¢ = 3] , Vses, (3.12)
k=0

The function v, is called state-value function for policy 7.

Similarly, we define the value of taking action a in state s under a policy 7,
denoted ¢r(s,a), as the expected return starting from s, taking the action a,
and thereafter following policy :

Ir(s,a) := Eﬂ[Gt | Sp =54 = a] =Er [Z 'Yth—i-k—&-l | Sy =s,A = a] .
k=0
(3.13)

We call g, the action-value function for policy .

The value functions v, and ¢, can be estimated from experience, for example
through Monte Carlo methods (see Appendix D) because they involve averaging
over many random samples of actual returns.

A fundamental property of value functions is that they satisfy a recursive re-
lationship. For any policy 7 and any state s, the following consistency condition
holds:

Ur(8) = Ex[Gy | St = 8| = Ex[Rey1 + YGiy1 | St = s (3.14)

=Y w(a|s)> p(s,r]s.a)[r+yva(s)], VseS.

This is the Bellman equation for v .
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For finite MDPs, we define an optimal policy ©* as one that achieves the
highest expected return for all states.

In Section 2.6.2, we cited contertual Markov decision processes (cMDPs).
They have been introduced in [40] and, informally, can be defined as a collection
of MDPs that share the same state and action spaces. We give the definition.

Definition 41. A contextual Markov decision process (cMDP) is a tuple (C, 8, A, M (c))
where:

e C is the context space,
e S and A are the state and action spaces, respectively,

e M is a function mapping any context ¢ € € to an MDP M(c) = (8, A, pc(y |

z,a),7.(x),70).

The simplest scenario in a cMDP setting occurs when the context is observ-
able. In this setting, the problem reduces to correctly generalizing the model
from the context. If the observable context c is finite, where |€| = K, then with-
out further assumption, one can simply learn K different models. Otherwise,
other strategies may be applied.



Appendix D

Monte Carlo Methods

We usually refer to Monte Carlo methods whenever we derive a certain quantity
through a simulation process. We referred to it in Chapter 5, when we derived
high-dimensional results of expected runtime and standard deviation through
simulation of the algorithm and we will now give a better formalization follow-
ing [85]. Formally, Monte Carlo methods can be defined as a simple way to
estimate the value of an integral from a set of samples. We consider thus the
problem of approximating

1= [ f@)du(a). (D.1)

Taking u as a probability distribution in the domain 2, we can write as [
many relevant quantities in statistics, such as the expectation or the standard
deviation.

The easiest way to proceed is to approximate the integral in (D.1) using a
sample average approximation. Suppose that we have a set of samples {z;}M_,
drawn according to the probability described by p, we can approximate the
integral I with the sum.

. 1 XM
I:Mnglf(xm)

We note that the implementation of this process can easily take advantage
of parallelization in the calculation of f(x,,) for each m, as we did in our
simulations.

The theoretical guarantee behind the consistency of I is the law of large
numbers, which guarantees that I 5 Tad M — . Using the central limit
theorem, we can even study the convergence rate. We take the proof from [64].

The Central Limit Theorem states that, given a sequence of i.i.d. random
variables (X,,)men With mean p and variance o2 < oo, the following holds:

VM

g

1 X D
VAYE (MmZ::le_”> — N(0,1).

The symbol L mmeans that the sequence of random variables (Zys)pren
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converges in distribution to a normal random variable with mean zero and vari-
ance 1. In this case, convergence “in distribution” means that the cumulative
functions (or distribution functions) Fz,, (x) := P(Zy < x) converge pointwise

in R to that of the normal variable ®(x) := \/% [ e~ 3 dt.

This implies that for any ¢ > 0, the following hold:
lim P(Zy <c¢)=®(c)
M—o0
and therefore

A}i_r}rlooP(|ZM| <c¢)=®(c) — P(—c) =2P(c) — 1.

Thus, the probability that the Monte Carlo estimator (the empirical mean)

1 M
Xy =772 X
m=1

differs from the desired value p by less than \/f%, in the limit M — oo, depends

only on c.
For example, choosing ¢ = 3, the probability that the Monte Carlo estimator
X has an error less than \%‘\7[ is approximately 2®(3) — 1 ~ 0.9973. It follows

1
/M’

that the Monte Carlo method converges at a rate often written informally

_g_

as\XM—u]rvm



Appendix E

Complete Results

In this Appendix, we report the complete simulation results described in Chap-

ter 5.

In Table E.1, we provided the complete results for the simulation of the op-
timal fitness-based policy and the heuristics with lexicographic selection. The
first column indicates the problem dimension; the second and third report the
estimated runtime expectation and standard deviation using the fitness-based
and the heuristic policy, respectively; the fourth indicates the percentage ad-
vantage; the fifth and the sixth, the relative standard deviation for the two

policies.
n LO H. Adv. Rel SD LO | Rel SD h.
2 1.521 + 1.519 1.735 + 1.653 -12.45% 0.998 0.952
3 3.079 + 2.849 2.397 + 2.565 22.16% 0.924 1.070
4 5.424 + 4.370 4.435 £ 4.157 18.23% 0.806 0.937
5 8.054 + 5.631 6.477 + 4.810 19.56% 0.699 0.743
6 11.027 + 7.388 9.137 + 6.276 17.15% 0.670 0.687
7 13.751 + 8.729 11.402 + 7.302 17.06% 0.634 0.640
8 18.476 + 11.109 14.413 + 9.253 21.98% 0.601 0.642
9 21.882 + 12.419 18.415 + 10.473 15.84% 0.568 0.569
10 27.929 + 15.160 20.369 + 11.564 27.08% 0.543 0.568
11 30.574 + 14.944 23.619 £+ 12.446 22.73% 0.489 0.527
12 36.457 £+ 18.309 27.685 £+ 14.463 24.05% 0.502 0.522
13 39.183 + 18.929 31.704 + 16.737 19.10% 0.483 0.528
14 46.835 + 22.381 33.810 £+ 16.276 27.83% 0.478 0.482
15 52.032 + 23.872 37.208 + 18.122 28.47% 0.459 0.487
16 57.457 + 26.569 40.549 + 18.181 29.41% 0.462 0.448
17 61.977 + 27.859 45.181 + 21.168 27.12% 0.449 0.469
18 69.339 + 29.535 48.380 + 21.923 30.25% 0.426 0.453
19 74.388 4+ 31.414 53.886 + 23.645 27.57% 0.422 0.439
20 83.052 + 35.401 56.817 £ 24.935 31.58% 0.426 0.439
21 88.691 + 36.442 59.768 + 26.665 32.59% 0.411 0.446
22 95.302 + 37.489 63.291 + 26.779 33.58% 0.394 0.423
23 | 100.346 + 38.826 67.683 + 28.609 32.54% 0.387 0.423
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24 | 108.795 £ 40.219 72.138 £ 29.395 33.67% 0.369 0.408
25 | 112.672 £ 40.352 76.243 £ 32.626 32.33% 0.358 0.428
26 | 124.253 £+ 47.718 79.950 £ 33.704 35.63% 0.384 0.422
27 | 128.409 £ 46.414 86.065 £ 33.028 32.97% 0.362 0.384
28 | 140.431 £ 51.147 89.395 £ 36.086 36.35% 0.364 0.404
29 | 141.650 £ 48.752 93.281 £ 36.266 34.15% 0.344 0.389
30 | 156.440 £ 57.204 97.100 + 38.187 | 37.92% 0.366 0.393
31 | 157.080 £ 57.249 101.878 + 38.332 | 35.14% 0.364 0.376
32 | 174.734 £+ 58.622 107.705 + 40.617 | 38.36% 0.336 0.377
33 | 174.486 £ 60.132 108.068 + 39.889 | 38.06% 0.345 0.369
34 | 184.784 £ 60.764 114.528 + 42.385 | 38.02% 0.329 0.370
35 | 189.289 £ 63.387 119.655 + 47.764 | 36.79% 0.335 0.399
36 | 198.642 £ 64.546 124.477 + 46.496 | 39.53% 0.314 0.364
37 | 206.226 £ 68.097 131.135 + 46.604 | 36.41% 0.330 0.355
38 | 226.386 £ 75.399 131.394 + 48.877 | 41.97% 0.333 0.372
39 | 229.472 £ 76.926 136.728 + 50.120 | 40.41% 0.335 0.367
40 | 247.874 £+ 78.601 142.537 + 51.631 | 42.49% 0.317 0.362
41 | 253.898 + 81.027 143.097 + 55.524 | 43.65% 0.319 0.388
42 | 269.894 + 86.111 149.254 £+ 57.001 | 44.71% 0.319 0.382
43 | 276.784 £ 88.894 153.651 + 57.818 | 44.47% 0.321 0.376
44 | 284.146 + 88.953 156.014 + 59.811 | 45.10% 0.313 0.383
45 | 292.925 + 93.407 164.274 + 61.643 | 43.42% 0.319 0.375
46 | 313.325 £ 98.978 168.542 + 63.163 | 46.20% 0.316 0.375
47 | 316.871 + 100.616 | 171.923 + 65.781 | 45.73% 0.318 0.383
48 | 341.467 + 108.826 | 181.289 + 66.109 | 46.91% 0.319 0.364
49 | 350.737 + 110.615 | 185.174 £+ 70.050 | 47.20% 0.316 0.378
50 | 365.279 + 113.261 | 189.796 + 70.485 | 48.06% 0.310 0.371
51 | 375.247 + 117.238 | 191.904 + 71.795 | 48.90% 0.312 0.374
52 | 390.667 + 120.894 | 199.386 + 73.285 | 48.98% 0.309 0.368
53 | 399.279 + 125.013 | 208.874 + 73.365 | 47.68% 0.313 0.351
54 | 418.741 + 133.688 | 214.174 + 79.111 | 49.00% 0.319 0.369
55 | 422.569 + 130.423 | 217.804 + 77.857 | 48.44% 0.309 0.357
56 | 439.817 + 135.901 | 227.416 + 82.550 | 48.29% 0.309 0.363
57 | 448.724 + 134.249 | 235.257 + 82.344 | 47.35% 0.299 0.350
58 | 478.070 + 142.799 | 241.436 + 86.061 | 49.45% 0.299 0.356
59 | 489.768 4+ 147.194 | 245.529 + 87.676 | 49.82% 0.301 0.357
60 | 497.972 + 148.056 | 249.367 £ 87.830 | 49.90% 0.297 0.352
61 | 508.935 + 150.723 | 258.354 £ 90.569 | 49.24% 0.296 0.351
62 | 530.522 + 160.356 | 266.594 + 92.727 | 49.79% 0.302 0.348
63 | 552.918 + 170.515 | 272.634 £ 95.887 | 50.35% 0.308 0.352
64 | 548.249 + 157.014 | 275.498 + 93.911 | 49.67% 0.286 0.341
65 | 573.929 + 173.709 | 283.913 £ 99.019 | 50.53% 0.303 0.349
66 | 600.781 + 177.708 | 295.673 + 98.462 | 50.80% 0.296 0.333
67 | 622.059 + 183.716 | 301.529 + 101.056 | 51.54% 0.295 0.335
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68 | 632.316 + 183.328 | 310.225 + 103.255 | 50.97% 0.290 0.333
69 | 658.671 + 192.938 | 317.198 &+ 105.193 | 51.58% 0.293 0.332
70 | 686.021 + 201.404 | 322.379 £+ 107.782 | 52.99% 0.294 0.334
71 | 691.160 &+ 204.654 | 330.573 £+ 109.750 | 52.18% 0.296 0.332
72 | 730.918 + 216.754 | 343.061 £+ 114.235 | 53.05% 0.297 0.333
73 | 739.098 + 209.201 | 348.078 4+ 112.268 | 52.90% 0.283 0.323
74 | 769.792 + 225.377 | 362.014 £+ 113.681 | 53.02% 0.293 0.314
75 | 793.235 + 230.551 | 368.101 + 117.044 | 53.60% 0.291 0.318
76 | 799.644 + 230.308 | 376.487 £+ 118.391 | 52.60% 0.288 0.315
77 | 830.993 + 235.029 | 384.601 £+ 121.068 | 53.73% 0.283 0.315
78 | 857.703 + 241.768 | 394.934 £+ 122.296 | 54.00% 0.282 0.310
79 | 884.473 + 247.100 | 405.277 £+ 125.830 | 54.16% 0.279 0.311
80 | 913.492 + 258.417 | 409.831 4+ 126.823 | 55.03% 0.283 0.310
81 | 930.277 + 253.452 | 419.451 4+ 128.335 | 54.91% 0.272 0.306
82 | 964.273 + 262.197 | 431.721 4+ 130.199 | 55.23% 0.272 0.302
83 | 982.580 + 265.156 | 441.317 4+ 132.255 | 55.09% 0.270 0.300
84 | 1007.287 £ 269.950 | 447.661 £+ 133.727 | 55.57% 0.268 0.299
85 | 1035.882 £ 276.669 | 457.912 + 135.113 | 55.78% 0.267 0.295
86 | 1072.063 + 286.797 | 471.109 + 137.508 | 56.05% 0.267 0.292
87 | 1075.034 £ 286.262 | 477.635 £+ 138.618 | 55.56% 0.266 0.290
88 | 1121.810 4+ 292.071 | 492.453 4+ 143.356 | 56.11% 0.260 0.291
89 | 1155.908 £ 297.655 | 499.779 £+ 145.225 | 56.76% 0.257 0.291
90 | 1195.506 + 308.327 | 512.781 4+ 144.698 | 57.13% 0.258 0.282
91 | 1212.222 4+ 311.790 | 518.417 4+ 149.401 | 57.22% 0.257 0.288
92 | 1243.608 + 314.378 | 532.831 £+ 150.272 | 57.14% 0.253 0.282
93 | 1266.778 £+ 318.859 | 541.303 £+ 151.651 | 57.26% 0.252 0.280
94 | 1301.315 + 324.150 | 549.702 + 154.222 | 57.76% 0.249 0.281
95 | 1341.020 + 332.507 | 563.537 + 155.153 | 58.00% 0.248 0.275
96 | 1380.477 £ 340.808 | 578.265 £+ 157.106 | 58.12% 0.247 0.272
97 | 1398.453 £ 342.208 | 589.471 £+ 160.173 | 57.86% 0.245 0.272
98 | 1448.055 £ 357.629 | 604.158 £+ 159.772 | 58.28% 0.247 0.264
99 | 1484.031 £ 357.983 | 616.595 + 161.838 | 58.47% 0.241 0.263

Table E.1: Simulation results for lexicographic selection

In Table E.2, we provided the corresponding results for standard selection.

n LO H. Adv. Rel SD LO | Rel SD h.
2 1.540 £ 1.548 1.984 + 2.114 -22.38% 1.005 1.065
3 3.354 £+ 3.234 2.564 £ 2.629 30.80% 0.964 1.026
4 5.984 £ 5.110 5.222 £ 5.483 14.60% 0.854 1.050
5) 9.934 £ 7.493 8.008 + 6.524 24.06% 0.754 0.814
6 13.968 £ 9.445 11.922 £ 9.734 17.12% 0.676 0.817
7 18.122 + 11.562 16.270 £ 11.785 11.39% 0.638 0.724
8 24.878 £ 16.563 22.444 £+ 15.201 10.84% 0.666 0.677
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n LO H. Adv. Rel SD LO | Rel SD h.
9 30.476 + 18.156 27.874 £ 17.174 9.33% 0.596 0.616
10 38.878 £ 23.354 34.238 + 19.830 13.57% 0.600 0.579
11 47.232 + 24.559 45.948 + 24.219 2.79% 0.520 0.527
12 54.064 £ 28.766 51.584 £+ 27.595 4.80% 0.532 0.535
13 66.516 + 34.984 61.540 + 29.190 8.08% 0.526 0.474
14 76.644 + 38.734 73.636 £ 33.568 4.09% 0.505 0.456
15 87.720 £ 42.997 85.900 £ 38.781 2.12% 0.490 0.451
16 | 100.468 + 43.384 90.538 £ 39.881 10.97% 0.432 0.440
17| 111.104 + 48.380 107.988 4 47.683 2.89% 0.435 0.442
18 | 124.712 +£ 54.559 117.618 £ 49.745 6.03% 0.437 0.423
19 | 142.262 £ 59.733 130.030 £ 53.195 9.39% 0.420 0.409
20 | 159.806 & 63.532 151.438 £+ 61.158 5.53% 0.398 0.404
21 | 170.142 £ 68.026 165.094 £+ 59.392 3.06% 0.400 0.360
22 | 180.898 £ 70.501 174.248 £+ 65.548 3.82% 0.390 0.376
23 | 205.540 £ 78.145 197.738 £ 71.211 3.94% 0.380 0.360
24 | 225.634 £ 85.848 215.244 + 79.943 4.82% 0.381 0.372
25 | 237.016 £ 90.579 228.238 + 77.480 3.84% 0.382 0.339
26 | 255.660 £ 89.167 249.706 £ 91.585 2.39% 0.349 0.367
27 | 280.474 £ 97.709 279.278 £ 96.741 0.43% 0.348 0.347
28 | 302.822 £ 103.388 287.494 £ 93.560 5.33% 0.341 0.325
29 | 333.348 £ 109.443 | 316.956 £+ 103.010 5.17% 0.328 0.325
30 | 344.132 + 114.888 | 347.866 + 102.573 | -1.07% 0.334 0.295
31 | 377.698 + 125.013 | 358.148 £ 109.138 5.45% 0.331 0.305
32 | 396.354 + 126.355 | 396.740 + 113.515 | -0.10% 0.319 0.286
33 | 424.156 £ 132.659 | 409.274 £ 124.055 3.64% 0.313 0.303
34 | 452.094 £ 155.913 | 418.974 £ 131.209 7.90% 0.345 0.313
35 | 466.338 £ 149.266 | 460.110 £ 131.712 1.35% 0.320 0.286
36 | 501.080 £ 151.340 | 481.282 +£ 145.533 4.11% 0.302 0.302
37 | 524.030 + 162.983 | 507.542 + 134.957 | 3.25% 0.311 0.266
38 | 558.194 £ 157.231 | 548.504 £ 148.992 1.77% 0.282 0.272
39 | 594.958 + 172.625 | 566.120 + 151.610 5.10% 0.290 0.268
40 | 634.470 £ 178.173 | 599.824 £ 165.272 5.78% 0.281 0.276
41 | 638.622 + 183.742 | 634.850 + 171.318 0.59% 0.288 0.270
42 | 676.268 £ 188.897 | 675.190 £ 181.503 0.16% 0.279 0.269
43 | 723.706 = 200.559 | 700.890 4 184.341 3.25% 0.277 0.263
44 | 768.130 + 204.703 | 736.860 £ 183.127 | 4.24% 0.266 0.248
45 | 784.818 £ 228.262 | 751.108 £ 204.712 4.49% 0.291 0.273
46 | 814.578 £ 227.979 | 800.156 + 211.897 1.80% 0.280 0.265
47 | 863.886 + 236.384 | 857.376 + 214.573 0.76% 0.274 0.250
48 | 892.408 £ 240.167 | 875.020 £ 222.680 1.99% 0.269 0.255
49 | 933.238 + 233.251 | 903.270 + 231.230 3.32% 0.250 0.256
50 | 970.620 £ 254.967 | 960.984 £ 234.036 1.00% 0.263 0.243
51 | 1024.944 + 263.181 | 998.240 £ 243.115 2.68% 0.257 0.244
52 | 1041.664 + 254.046 | 1028.558 + 251.407 | 1.27% 0.244 0.244
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n LO H. Adv. Rel SD LO | Rel SD h.
53 | 1084.788 + 291.656 | 1072.108 £+ 260.001 | 1.18% 0.269 0.243
54 | 1155.574 + 289.462 | 1130.680 4+ 278.674 | 2.20% 0.251 0.246
55 | 1177.862 + 276.582 | 1156.378 £+ 255.059 | 1.86% 0.235 0.221
56 | 1210.000 + 282.884 | 1177.922 4+ 277.622 | 2.72% 0.234 0.236
57 | 1264.870 + 300.372 | 1220.366 + 272.436 | 3.65% 0.238 0.223
58 | 1306.196 + 296.951 | 1291.686 + 295.628 | 1.12% 0.227 0.229
59 | 1356.370 + 319.237 | 1332.690 £+ 295.024 | 1.78% 0.235 0.221
60 | 1406.206 + 331.049 | 1376.612 + 329.040 | 2.15% 0.235 0.239
61 | 1426.620 + 333.408 | 1410.034 + 337.567 | 1.18% 0.234 0.239
62 | 1530.988 + 367.547 | 1465.888 + 318.839 | 4.44% 0.240 0.217
63 | 1525.422 £ 338.358 | 1537.746 + 329.047 | -0.80% 0.222 0.214
64 | 1601.854 £ 359.003 | 1552.214 + 345.653 | 3.20% 0.224 0.223
65 | 1640.820 £+ 379.043 | 1610.160 + 356.001 | 1.90% 0.231 0.221
66 | 1676.506 + 382.343 | 1665.882 + 383.157 | 0.64% 0.228 0.230
67 | 1731.672 £+ 398.312 | 1729.554 + 366.457 | 0.12% 0.230 0.212
68 | 1795.718 £ 396.543 | 1784.460 + 377.619 | 0.63% 0.221 0.212
69 | 1871.666 + 416.838 | 1847.394 + 402.277 | 1.31% 0.223 0.218
70 | 1886.518 + 405.619 | 1866.500 + 416.876 | 1.07% 0.215 0.223
71 | 1950.272 + 425.311 | 1961.024 + 428.716 | -0.55% 0.218 0.219
72 | 2031.002 £ 420.325 | 2016.996 + 434.788 | 0.69% 0.207 0.216
73 | 2080.514 + 437.115 | 2077.114 4+ 462.841 | 0.16% 0.210 0.223

Table E.2:

Simulation results for standard selection
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