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Abstract

Uno dei problemi più rilevanti nella nostra epoca di cambiamenti climatici è
lo studio della biodiversità delle popolazioni animali, cioè l’analisi della varietà
delle specie all’interno di un ambiente. Un contributo alla trattazione di questo
problema può venire dalla statistica bayesiana: essa, infatti, fornisce degli stru-
menti per stimare la distribuzione delle specie in una popolazione a partire da
un campione osservato; uno di questi è la formula di campionamento di Ewens.
Nel corso di questa tesi ci occupiamo della deduzione, delle proprietà e delle
applicazioni della formula di Ewens: essa consiste in una formula per le proba-
bilità delle partizioni di un insieme {1, . . . , n} e si deduce in maniera astratta
ma trova, poi, numerose applicazioni, la più nota delle quali allo studio della
dinamica delle popolazioni. Apriremo la nostra trattazione dando delle nozioni
introduttive di statistica bayesiana non parametrica con l’obiettivo di defini-
re il processo di Dirichlet a partire dalle leggi finito-dimensionali; dedurremo
poi, a partire da quest’ultimo e dal processo del ristorante cinese, la formula
di Ewens. Presenteremo anche un metodo Monte Carlo per la costruzione spe-
rimentale della formula tramite simulazioni in Matlab. Infine, descriveremo
il modello di Wright-Fisher, un modello di dinamica delle popolazioni in cui il
risultato di Ewens trova applicazioni.
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Introduzione

"La formula di campionamento di Ewens esemplifica l’armonia della teoria ma-
tematica, dell’applicazione statistica e della scoperta scientifica" [5], queste sono
le parole che usa Harry Crane per riassumere la potenza della formula di cam-
pionamento di Ewens, un risultato fondamentale della statistica bayesiana di
cui quest’anno celebriamo i 50 anni dalla sua derivazione originaria [7]. Questa
formula, infatti, è in grado di convogliare al suo interno uno degli aspetti più
entusiasmanti della matematica cioè l’armonica convivenza di astrazione con
risvolti applicativi a un ampio spettro di problemi, alcuni più concreti, come
lo studio della genetica delle popolazioni, motivazione originale della nascita di
questa formula, altri più simili a divertissement matematici: per esempio, si può
utilizzare la formula di Ewens per contare il numero di cerchi ottenuti legando
casualmente tra di loro gli estremi di n spaghetti cotti [17]. Come le teorie
matematiche più interessanti, la formula di Ewens rivela il legame profondo che
unisce sottotraccia problemi provenienti dagli ambiti più disparati: mette in
luce, cioè, un pattern che la matematica permette di vedere astraendo dalla
realtà delle cose. In questo caso, il fil rouge che unisce tutte le applicazioni di
questa formula è un problema statistico. Lo illustriamo, però, a partire da un
caso concreto.

Nel 1943 Fisher, Corbet e Williams decidono di studiare la distribuzione
delle specie di farfalle in Malesia [9]. I tre studiosi raccolgono un campione di
misurazioni delle specie di farfalle osservate: un obiettivo è quello di dedurre
tramite inferenza, a partire da n osservazioni x1, . . . , xn, la distribuzione delle
specie nell’intera popolazione studiata. Il problema che sorgeva in questi studi
consisteva nell’impossibilità di compiere inferenza con tecniche tradizionali: a
differenza dalla teoria standard, infatti, in questo caso lo spazio campionario X1
in cui le osservazioni assumono valori non è ben definito. X1, infatti, avrebbe
dovuto contenere tutte le possibili specie di farfalle, tuttavia durante gli studi
venivano osservati individui di tipi non ancora scoperti. Il problema statistico
alla base, quindi, consiste nel voler compiere studi di frequenza su uno spazio a
priori non noto. Il modo di agire che si segue in questi casi è quello di tradurre
i dati in una struttura di partizione, cioè dalla n-upla di osservazioni x1, . . . , xn

si passa a una partizione dell’insieme {1, . . . , n}. Essa permette di classificare
le osservazioni di uno stesso tipo assegnando gli indici corrispondenti alla stessa
partizione. La formula di Ewens consente, poi, di definire un modello statistico
sulle partizioni di {1, . . . , n}: essa, infatti, consiste in una formula che assegna
un valore di probabilità a ciascuna partizione.

La versatilità della formula di Ewens riemerge nel fatto che la sua deduzione
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può avvenire in vari modi: può avvenire per via diretta e astratta, attraverso
alcune strutture del processo di Dirichlet, per via ricorsiva, tramite il processo
del ristorante cinese, e per via sperimentale da studi sulla genetica delle popo-
lazioni. La deduzione originale di Ewens è proprio quest’ultima: egli, infatti,
ha introdotto la sua formula per misurare le probabilità di partizioni alleliche
in una popolazione.

Nella tesi presentiamo diverse di queste costruzioni. Il capitolo iniziale si
occupa di alcuni aspetti preliminari, in particolare ha come scopo la costruzione
del processo di Dirichlet tramite la scritture di leggi finito-dimensionali: in que-
sto capitolo tratteremo, in particolare, con variabili aleatorie scambiabili che
modellizzano l’idea delle osservazioni sperimentali in condizioni analoghe. Nel
capitolo successivo affronteremo il cuore della tesi, cioè la deduzione della formu-
la di campionamento di Ewens a partire dal processo di Dirichlet e dal processo
del ristorante cinese: dopo l’analisi dettagliata di alcuni casi elementari, pro-
cederemo a una costruzione generale della formula. Inoltre, introdurremo una
costruzione "Monte Carlo" della formula tramite alcune simulazioni di partizioni
casuali effettuate con l’utilizzo di Matlab. Nel terzo capitolo, poi, proporremo
un modello di dinamica delle popolazioni, il modello di Wright-Fisher, in cui la
formula di Ewens trova applicazione per descrivere la distribuzione delle parti-
zioni alleliche all’interno di una popolazione. Infine, nella sezione Conclusioni
e orizzonti trarremo le conclusioni sull’elaborato e sul problema di apertura e
presenteremo alcuni possibili orizzonti di ricerca sui temi trattati. Nelle tre ap-
pendici sono riportati alcuni risultati riguardanti i numeri di Stirling e i numeri
di Bell e degli approfondimenti sugli aspetti implementativi della deduzione
Monte Carlo della formula.
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Capitolo 1

Processo di Dirichlet

1.1 Variabili aleatorie scambiabili
In questo capitolo preliminare introduciamo alcuni concetti di statistica baye-
siana non parametrica [14]: in particolare, tratteremo con variabili aleatorie
scambiabili, il cui interesse viene naturale dallo studio statistico che anima la
ricerca presentata nell’introduzione. Come vedremo, infatti, il concetto di scam-
biabilità riflette l’indifferenza dell’ordine delle osservazioni effettuate e quindi
ben si addice a descrivere osservazioni sperimentali in contesti analoghi. L’o-
biettivo del capitolo è, poi, la costruzione del processo di Dirichlet a partire
dalle leggi finito-dimensionali.

Incominciamo definendo lo spazio in cui andremo a studiare i nostri risultati.
Ci poniamo in uno spazio misurabile (X1, χ1): nel corso della trattazione questo
coinciderà, di fatto, con (R,B(R)) o anche ([a, b] ⊆ R,B([a, b])). Chiameremo,
poi, (P,L) lo spazio metrico delle misure di probabilità sullo spazio (X1, χ1).
Sarà (P,P) lo spazio misurabile associato dove P è il boreliano di P rispetto
alla metrica L. Sia, inoltre, (Ω,F, P ) uno spazio di probabilità nel senso di
Kolmogorov.

Consideriamo, poi, {Xn}n≥1 delle variabili aleatorie definite da (Ω,F) in
(X1, χ1).

Possiamo, quindi, dare la definizione di variabili aleatorie scambiabili:

Definizione 1.1.1 (scambiabilità). Data una successione di variabili aleatorie
{Xn}n≥1, diciamo che è formata da variabili aleatorie scambiabili se vale la
seguente proprietà:

P [X1 = x1, . . . , Xn = xn] = P [X1 = xσ(1), . . . , Xn = xσ(n)]

∀n ∈ N, ∀σ ∈ Sn, ∀x1, . . . , xn ∈ {0, 1}

La definizione indica che per le variabili aleatorie {Xn}n≥1 che andremo
a considerare non è rilevante l’ordine con cui vengono raccolte le osservazioni
ma solo il risultato delle osservazioni stesse; possiamo immaginare questo come
il caso in cui le osservazioni vengono effettuate tutte in condizioni analoghe.
Capiamo, quindi, il collegamento con il problema presentato nell’introduzione
in cui le misure effettuate avvengono sempre nello stesso contesto.
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Un caso particolarmente rilevante di variabili scambiabili è quello delle va-
riabili indipendenti e identicamente distribuite. Tramite la scambiabilità si
generalizza il concetto di variabili i.i.d. È possibile generalizzare anche uno
dei risultati più importanti per variabili aleatorie i.i.d., cioè la legge dei grandi
numeri, che assume la forma che segue.

Teorema 1.1.1 (legge forte dei grandi numeri). Siano {Xn}n≥1 una succes-
sione di variabili aleatorie scambiabili definite da Ω in R.

Allora esiste una misura di probabilità

µ : (Ω,F) → (P,L)

tale per cui per ogni funzione continua e limitata g : R → R vale che

lim
n→+∞

1
n

n∑
i=1

g(Xi) =
∫
R

|g(t)| dµ(t)

quasi certamente e in L2.

Vale, inoltre, che la misura µ si può caratterizzare anche grazie al teorema
di portmanteau come limite di convergenza debole di 1

n

∑n
i=1 δXi .

La legge dei grandi numeri porta alcune implicazioni immediatamente vi-
sibili: una caratterizzazione equivalente ma forse di più facile intuizione, per
esempio, si ha riscrivendo l’integrale limite come valore atteso. Otteniamo
quindi

lim
n→+∞

1
n

n∑
i=1

g(Xi) = E[|g(X1)|]

Si nota in questo modo anche la differenza rispetto al teorema analogo per
variabili aleatorie i.i.d. che consiste nel fatto che il termine di destra è un
termine aleatorio.

A partire dalla legge dei grandi numeri per variabili aleatorie scambiabili si
ricava, poi, la legge per variabili aleatorie i.i.d. come caso particolare.

1.2 Costruzione di misure su (P,L)
Una questione che vogliamo affrontare, a questo punto, è la definizione di una
misura di probabilità q su (P,L), cioè, di fatto, la definizione di una misura di
probabilità su uno spazio di misure di probabilità.

Possiamo caratterizzare la funzione q come legge di µ, la misura di proba-
bilità da (Ω,F) a (P,L) della legge dei grandi numeri. Questo significa che,
chiamata P l’algebra di Borel di P, vale che:

∀B ∈ P q(B) := P (µ−1(B)) = P (µ ∈ B)

Dove ricordiamo che P è una misura di probabilità sullo spazio (Ω,F)
Conseguenza di questa definizione è che q permette di caratterizzare lo spa-

zio (P,P, q) come spazio di probabilità nel senso di Kolmogorov. Fa uso di
questa caratterizzazione il seguente risultato fondamentale:
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Teorema 1.2.1 (di rappresentazione di De Finetti). {Xn}n≥1 rappresenta una
successione di variabili aleatorie scambiabili se e solo se

P [X1 ∈ A1, . . . , Xn ∈ An] =
∫
P

n∏
i=1

p(Ai) dq(p) ∀A1, . . . , An ∈ B(R)

Il teorema di rappresentazione è un risultato molto importante: esso, infatti,
ci permette di caratterizzare la legge delle variabili {Xn}n≥1 utilizzando sola-
mente la misura q. Per rendere più intuitiva la caratterizzazione, la si può dare
tramite la misura µ, sfruttando la definizione di q data precedentemente. Varrà,
infatti, che, per ogni h : P → R continua e limitata, E[h(µ)] =

∫
P h(p) dq(p) per

definizione della speranza matematica.
Quindi, riscrivendo l’integrale del teorema, otteniamo che:

P [X1 ∈ A1, . . . , Xn ∈ An] = E[µ(A1) . . . µ(An)]

1.3 Esempi di misure su (P,L)

La definizione di q data finora non ci aiuta nella costruzione concreta di misure
di questo tipo dato che essa è stata caratterizzata tramite una misura µ di cui
abbiamo riportato un risultato di esistenza non costruttivo.

Vogliamo, quindi, descrivere alcuni esempi di misure q. Per fare ciò usiamo
l’approccio seguito da Ferguson in [8], cioè costruiamo delle leggi di probabi-
lità finito-dimensionali e sfruttiamo, poi, un teorema astratto che garantisce
esistenza e unicità di q associandola a una di queste leggi.

Per costruire le leggi finito-dimensionale procediamo nel seguente modo:

• Consideriamo una variabile m ∈ N, m ≥ 2.

• Fissata m, consideriamo una partizione di R costituita da m sottoinsiemi
a due a due disgiunti C1, . . . , Cm con Ci ∈ B(R).

• Consideriamo il vettore aleatorio (µ(C1), . . . , µ(Cm)) ∈ [0, 1]m, con∑m
i=1 µ(Ci) =

1. Notiamo che VC1,...,Cm−1 = (µ(C1), . . . , µ(Cm−1) ∈ ∆m−1 e possiamo,
quindi, considerare solamente il vettore aleatorio VC1,...,Cm : Ω → ∆m−1.

• A questo punto, possiamo sfruttare il fatto che ∆m−1 ⊆ [0, 1]m−1, su cui
pongo la misura di Lebesgue (m − 1)-dimensionale.

• Possiamo, quindi, infine, definire una densità ϕC1,...,Cm−1 su ∆m−1 e co-
struire, in maniera analoga rispetto a quanto si faceva su R, la legge
del vettore aleatorio VC1,...,Cm−1 . Quindi, data P una probabilità su
(∆m−1,B(∆m−1)), avremo che

P [VC1,...,Cm−1 ∈ D] =
∫

D
ϕC1,...,Cm−1(x) dx ∀D ∈ ∆m−1
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Il teorema di Ferguson permette, poi, di associare in maniera univoca una
misura di probabilità q su (P,L) a una densità ϕC1,...,Cm−1 costruita come legge
finito-dimensionale.

Prima di enunciare il teorema, però, è necessario dare la seguente definizione:

Definizione 1.3.1 (condizioni di compatibilità). Sia Φ = {ϕC1,...,Cm−1 , m ∈
N; m ≥ 2; C1, . . . , Cm−1, Cm partizione di R} un sistema di densità. Siano
Q = {qC1,...,Cm−1} le misure di probabilità associate. Il sistema di densità si
dice compatibile se valgono le seguenti condizioni:

(1) ∀A ∈ B(∆m−1) qC1,...,Cm−1(A) = qCσ(1),...,Cσ(m−1)(σ(A))
con σ ∈ Sm−1 e σ(A) = {(xσ(1), . . . , xσ(m−1)) : (x1, . . . , xm−1) ∈ A};

(2) qR = δ1;

(3) se si considera B1, . . . , Bn una partizione di R più fine di C1, . . . , Cm è
possibile passare da qC1,...,Cm−1 a qB1,...,Bn−1 tramite una trasformazione
delle variabili aleatorie associate;

(4) se Cn ∈ B(R) per ogni n e se {Cn}n≥1 è una successione decrescente di
insiemi con

⋂∞
n=1 Cn = ∅, allora qAn converge debolmente a δ0.

Possiamo quindi enunciare il teorema di Ferguson:

Teorema 1.3.1 (di Ferguson). Se la famiglia di densità Φ = {ϕC1,...,Cm−1 , m ∈
N; m ≥ 2; C1, . . . , Cm−1, Cm partizione di R} è compatibile, allora per ogni
densità ϕC1,...,Cm−1 esiste un’unica misura di probabilità µ : (R,B(R)) → (P,P)
avente legge ϕC1,...,Cm−1.

La probabilità q su (P,P) che cercavamo si definisce, poi, come legge di µ,
in maniera analoga a quanto fatto precedentemente.

1.4 Misura di Dirichlet

A questo punto possiamo usare le leggi di dimensione finita per costruire una
misura esplicita q su (P,L).

La strategia più comune per definire la misura q, infatti, è quella di dare la fa-
miglia di densità compatibili Φ = {ϕC1,...,Cm−1 , m ∈ N; m ≥ 2; C1, . . . , Cm−1, Cm}.

Costruiamo, quindi, queste leggi secondo la procedura illustrata precedente-
mente, andando, in particolare, a definire esplicitamente la distribuzione della
probabilità P .

Ripercorrendo i passi precedenti definiamo esplicitamente la legge della
probabilità P del vettore aleatorio VC1,...,Cn−1 = (µ(C1), . . . , µ(Cn−1)):

∀n ∈ N, n ≥ 2, ∀C1, . . . , Cn−1 partizione di R e ∀D ∈ B(∆n−1)

P [VC1,...,Cn−1 ∈ D] =
∫

D
ϕC1,...,Cn−1(x) dx
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Si tratta, quindi, di dare una definizione esplicita delle leggi ϕC1,...,Cn−1 ,
richiedendo su di esse solamente le condizioni di compatibilità.

Una costruzione notevole che sfrutta questo metodo è quella della misura
di Dirichlet. Essa parte assegnando una misura finita α su R. Per comodità di
notazione, introduciamo le seguenti quantità:

• θ := α(R)

• ᾱ(C) := α(C)/θ ∀C ∈ B(R)

Chiaramente varrà che 0 < θ < +∞. Notiamo anche che ᾱ non è altro
che la misura normalizzata di α e sarà, quindi, una misura di probabilità. In
particolare, varrà che α(C) = θᾱ(C) ∀C ∈ B(R).

A questo punto, definiamo le seguenti leggi di probabilità:

Definizione 1.4.1 (leggi di Dirichlet). ∀n ∈ N, n ≥ 2, ∀C1, . . . , Cn partizione
di R tale per cui α(Ci) > 0, ∀i = 1, . . . , n chiamiamo leggi di probabilità di
Dirichlet le leggi di probabilità definite nel seguente modo:

ϕC1,...,Cn−1(z1, . . . , zn−1) = Γ(θ)∏n
i=1 Γ(αi)

zα1−1
1 zα2−1

2 . . . z
αn−1−1
n−1 (1 −

n−1∑
i=1

zi)αn−1

con (z1, . . . , zn−1) ∈ ∆n−1 e αi := α(Ci)

Ponendo n = 2 si ritrova un caso notevole: la legge di Dirichlet, infatti,
assume la forma

ϕC1(z1) = Γ(θ)
Γ(α1)Γ(α2)zα1−1

1 (1 − z1)α2−1, z1 ∈ ∆1 = [0, 1]

che coincide con la densità della distribuzione beta.
Possiamo, ora, studiare la compatibilità della famiglia delle leggi di Dirichlet

appena definita.
La condizione (1) è ovvia: permutando contemporaneamente gli zi e gli

insiemi Ci, il valore della densità, infatti, rimane lo stesso. La condizione (2)
chiediamo che sia soddisfatta per definizione: infatti abbiamo definito le leggi
di Dirichlet solamente per n ≥ 2; poniamo, quindi, per n = 1

qR = δ1

Verifichiamo, poi, la condizione (3) in un esempio.
Partiamo dalla partizione C1, C2, C3 e costruiamo una nuova partizione

C ′
1 = C1 ∪ C2, C ′

2 = C3

È semplice notare che il vettore aleatorio (µ(C1), µ(C2)) e µ(C ′
1) sono legati

dalla seguente relazione

µ(C ′
1) = µ(C1 ∪ C2) = µ(C1) + µ(C2)

13



Possiamo, quindi, verificare che le densità relative sono legate da una somma
di variabili aleatorie.

In particolare le densità saranno rispettivamente:

ϕC1,C2(z1, z2) = Γ(θ)
Γ(α1)Γ(α2)Γ(α3)zα1−1

1 zα2−1
2 (1 − z1 − z2)α3−1

e

ϕC′
1
(z1) = Γ(θ)

Γ(α′
1)Γ(α′

2)z
α′

1−1
1 (1 − z1)α′

2−1 con α′
1 = α(C ′

1), α′
2 = θ − α′

1

A questo punto, se prendiamo (X, Y ) vettore aleatorio con densità

f(x, y) = Γ(θ)
Γ(α1)Γ(α2)Γ(α3)xα1−1yα2−1(1 − x − y)α3−1, (x, y) ∈ ∆2

La legge della variabile aleatoria X + Y si ricava essere

f(z) = Γ(θ)
Γ(α1 + α2)Γ(α3)zα1+α2−1(1 − z)α3−1, z ∈ [0, 1]

E riotteniamo il risultato voluto ricordando che α′
1 = α1 + α2 e α′

3 = α3.
Quindi possiamo passare da una densità all’altra tramite la trasformazio-

ne di variabili aleatorie (X, Y ) → X + Y , il che verifica la condizione di
compatibilità (3) in quest’esempio.

La verifica a mano funziona analogamente per casi simili ma più complessi.
Ad esempio nel caso in cui invece che una somma abbiamo un sistema lineare
Y = MX di variabili aleatorie. Anche in quel caso si calcola la legge di Y
direttamente e si verifica che è uguale alla legge della partizione corrispondente.
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Capitolo 2

Formula di campionamento di
Ewens

Nel presente capitolo ci dedichiamo alla deduzione della formula di campiona-
mento di Ewens. Essa fornisce una probabilità sullo spazio delle partizioni di
{1, . . . , n}; partiremo da casi semplici, con n = 2 e n = 3, e arriveremo poi a
scrivere la costruire la formula nel caso generale e a mostrare il suo legame con
la legge di probabilità delle variabili aleatorie scambiabili X1, . . . , Xn. Partiamo
enunciando la formula cui vogliamo giungere:

Teorema 2.0.1 (formula di campionamento di Ewens). Siano θ > 0 e n ∈ N.
Sia, inoltre, B1, . . . , Bk una partizione dell’insieme {1, . . . , n} e nj la cardinalità
dell’insieme Bj per j = 1, . . . , k, allora la probabilità assegnata alla partizione
B1, . . . , Bk è la seguente:

Ewens(n)(n1, . . . , nk; θ) = P [Πn = B1, . . . , Bk] = θk

(θ)n↑

k∏
j=1

(nj − 1)! (2.1)

Dove con Πn indichiamo una variabile aleatoria che assume valori nell’insieme
delle partizioni di {1, . . . , n}.

La formula 2.1 prende il nome di formula di campionamento di Ewens.

L’interpretazione immediata è la seguente: sia X1, . . . , Xn una successione
di variabili aleatorie scambiabili sullo spazio (R,B(R)) e sia B1, . . . , Bk una
partizione di {1, . . . , n}. Se vogliamo classificare i valori assunti dalle variabili
aleatorie, potremo dire che Xi = Xj se i e j appartengono allo stesso insieme
della partizione. La formula di Ewens ci fornisce, quindi, la probabilità che due o
più variabili aleatorie siano uguali o distinte. Dunque, ad esempio, nel problema
che ha animato questa tesi, le variabili aleatorie relative alle osservazioni di due
individui distinti coincidono se questi appartengono alla stessa specie.

Esiste anche un altro risultato strettamente legato alla formula 2.1 che pren-
de sempre il nome di formula di campionamento di Ewens ma che noi chiame-
remo, per evitare confusioni, formula di campionamento di Ewens parziale. La
scelta di questo nome è dovuta al fatto che, nonostante contenga la stessa infor-
mazione della formula di Ewens, la sua deduzione si ferma a uno step precedente
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rispetto ad essa. Essa, infatti, non assegna la probabilità alla singola partizione
ma la assegna ai valori n1, . . . , nk che rappresentano la cardinalità degli insiemi
della partizione. Possiamo dire, però, che le due formule contengono la stessa
informazione perché, come ovvio dalla definizione data, la formula 2.1 attri-
buisce la stessa probabilità a tutte le partizioni i cui insiemi hanno le stesse
cardinalità n1, . . . , nk.

Per introdurre la formula di Ewens parziale, definiamo dei valori mj . Chia-
miamo mj , j = 1, . . . , n il numero di ni i = 1, . . . , k uguali a j, cioè il numero
di insiemi nella partizione con esattamente j elementi. In maniera più formale
possiamo definirli come segue:

mj =
k∑

i=1
1{ni=j}

Notiamo, anche, che per gli mj vale la relazione

n∑
j=1

jmj = n

Essi, inoltre, forniscono tutte le informazioni che ci interessano sulla parti-
zione di {1, . . . , n}: infatti, fornire gli m1, . . . , mn è equivalente a fornire gli
n1, . . . , nk: infatti, dati gli mj avremo che gli n1, . . . , nk corrispondenti saranno
1, . . . , 1︸ ︷︷ ︸
m1 volte

, 2, . . . , 2︸ ︷︷ ︸
m2 volte

, . . . , n, . . . , n︸ ︷︷ ︸
mn volte

.

Possiamo, ora, definire la formula di Ewens parziale nel seguente teorema:

Teorema 2.0.2 (formula di Ewens parziale). Siano θ > 0 e n ∈ N. Siano,
inoltre, m1, . . . , mn ∈ {1, . . . , n} tali per cui

∑n
j=1 jmj = n, allora la probabilità

assegnata alla n-upla m1, . . . , mn è la seguente:

p(m1, . . . , mn; θ) = n!
(θ)(n)↑

n∏
j=1

θmj

jmj mj ! (2.2)

La dimostrazione del legame tra le due formule è riportata più avanti nel-
l’equazione 2.7.

Precisiamo che d’ora in avanti quando parleremo di formula di Ewens o
formula di campionamento di Ewens ci riferiremo alla formula 2.1, mentre per
riferirci alla formula 2.2 diremo sempre formula di campionamento di Ewens
parziale o formula di Ewens parziale.

2.1 Caso base: n = 2
Partiamo nella nostra costruzione da un caso semplice, fissando n = 2, e
mostriamo come ricavare le formula a partire dal processo di Dirichlet.

In questo caso abbiamo che le possibili partizioni sono due: {1}, {2} e {1, 2},
che corrispondono a {X1 = X2} e {X1 ̸= X2}. Quindi, scegliendo x ∈ R, che
- ricordiamo - è lo spazio su cui sono definite le variabili aleatorie considerate,
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finirò nel primo o nel secondo blocco secondo le probabilità date dalla formula
di Ewens.

Per la deduzione della formula, seguiamo questi due passi:

(A) Calcoliamo esplicitamente P [X1 ∈ A1, X2 ∈ A2] per A1, A2 ∈ B(R);

(B) deduciamo da P [X1 ∈ A1, X2 ∈ A2] il valore di P [X1 = X2].

Il valore delle probabilità P [X1 = X2] e del complementare P [X1 ̸= X2]
corrispondono ai due valori della formula di Ewens nel caso n = 2.

Dato che X1 e X2 sono variabili aleatorie scambiabili, possiamo sfruttare,
per il passo (A) il teorema di rappresentazione di De Finetti, che ricordiamo
ponendo n = 2:

P [X1 ∈ A1, X2 ∈ A2] =
∫
P

p(A1)p(A2)dq(p) = E[µ(A1)µ(A2)]

Per calcolare il valore della probabilità a sinistra, quindi, è sufficiente calco-
lare il valore atteso a destra. Per farlo, sfruttiamo la linearità del valore atteso,
partizionando lo spazio campionario R nel seguente modo:

C1 = A1\A2, C2 = A1 ∩ A2, C3 = A2\A1, C4 = (A1 ∪ A2)c

Chiaramente C1, C2, C3, C4 è una partizione di R.
A questo punto, essendo µ una misura, varranno le seguenti uguaglianze:

µ(A1) = µ(C1 ∪ C2) = µ(C1) + µ(C2)

µ(A2) = µ(C2 ∪ C3) = µ(C2) + µ(C3)

Quindi possiamo riscrivere il valore atteso nel seguente modo:

E[µ(A1)µ(A2)] = E[(µ(C1) + µ(C2))(µ(C2) + µ(C3))]
= E[µ(C1)µ(C2) + µ(C1)µ(C3) + (µ(C2))2 + µ(C2)µ(C3)]
= E[µ(C1)µ(C2)] + E[µ(C1)µ(C3)] + E[(µ(C2))2] + E[µ(C2)µ(C3)]

Si tratta, quindi, di studiare il valore atteso dei prodotti dei µ(Ci) i = 1, 2.
Calcoliamo esplicitamente, ad esempio, E[µ(C1)µ(C2)]. Per farlo, vorremmo

usare la formula per il prodotto di variabili aleatorie X e Y su Ω aventi densità
congiunta f(x, y):

E[XY ] =
∫

Ω
xyf(x, y)dxdy

Abbiamo, quindi, bisogno di una funzione di densità f che dipenda solamen-
te da due variabili. Tuttavia, nel nostro caso, la densità è la legge di Dirichlet
per una partizione con 4 elementi che dipende, però, da tre variabili. L’idea
per ricondurci a una funzione di sole due variabili è quella di definire una nuova
partizione nel seguente modo:
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C ′
1 = C1, C ′

2 = C2, C ′
3 = C3 ∪ C4

Chiaramente E[µ(C1)µ(C2)] = E[µ(C ′
1)µ(C ′

2)].
Inoltre la legge del vettore aleatorio (µ(C ′

1), µ(C ′
2)) è quella di Dirichlet per

la partizione C ′
1, C ′

2, C ′
3, cioè

f(z1, z2) = Γ(θ)
Γ(α′

1)Γ(α′
2)Γ(α′

3)z
α′

1−1
1 z

α′
2−1

2 (1 − z1 − z2)α′
3−1, (z1, z2) ∈ ∆2

Quindi il calcolo del valore atteso di (µ(C1), µ(C2)) si riduce al seguente
integrale:

E[µ(C1), µ(C2)] =
∫

∆2
z1z2

Γ(θ)
Γ(α′

1)Γ(α′
2)Γ(α′

3)z
α′

1−1
1 z

α′
2−1

2 (1 − z1 − z2)α′
3−1dz1dz2

Sfruttiamo, ora, il seguente lemma:

Lemma 2.1.1 (formula di Dirichlet). Dati n ∈ N e β1, . . . , βn > 0, vale che∫
∆n−1

zβ1−1
1 zβ2−1

2 . . . z
βn−1−1
n−1 (1−z1−· · ·−zn−1)βn−1dz1 . . . dzn−1 = Γ(β1)Γ(β2) . . . Γ(βn)

Γ(β1 + · · · + βn)

Attraverso la formula di Dirichlet si giunge immediatamente alla conclusione
che

E[µ(C1), µ(C2)] = α(C1)α(C2)
(θ + 1)θ

Analogamente si calcolano anche gli altri termini e si ottiene:

E[µ(C1), µ(C3)] = α(C1)α(C3)
(θ + 1)θ

E[µ(C2), µ(C3)] = α(C2)α(C3)
(θ + 1)θ

E[(µ(C2))2] = α(C2)(α(C2) + 1)
(θ + 1)θ

Ricostruendo la formula risulterà, quindi:

P [X1 ∈ A1, X2 ∈ A2] =

= α(C1)α(C2)
(θ + 1)θ + α(C1)α(C3)

(θ + 1)θ + α(C2)α(C3)
(θ + 1)θ + α(C2)(α(C2) + 1)

(θ + 1)θ =

= θ

θ + 1[ᾱ(C1)ᾱ(C2) + ᾱ(C1)ᾱ(C3) + ᾱ(C2)ᾱ(C3) + ᾱ(C2)2] + 1
θ + 1 ᾱ(C2) =

= γᾱ(A1)ᾱ(A2) + (1 − γ)ᾱ(A1 ∩ A2)

Che riassumiamo come segue:
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P [X1 ∈ A1, X2 ∈ A2] = γᾱ(A1)ᾱ(A2) + (1 − γ)ᾱ(A1 ∩ A2) (2.3)

dove abbiamo definito γ := θ/(θ + 1)
Possiamo, ora, procedere al punto (B). Vogliamo, cioè, dimostrare che

P [X1 = X2] = γ e P [X1 ̸= X2] = 1 − γ, quindi che la formula di Ewens
fornisce i pesi γ dell’equazione 2.3.

Enunciamo e dimostriamo la seguente proposizione:

Proposizione 2.1.1.
P [X1 = X2] = 1 − γ

Dimostrazione. Per procedere con la dimostrazione notiamo che, se il nostro
spazio è X1 = R, oppure X1 = [a, b] ⊆ R, la probabilità dell’evento {X1 = X2} è
pari alla probabilità che il vettore aleatorio bidimensionale (X1, X2) appartenga
alla diagonale dello spazio X1 × X1. Formalizziamo la dimostrazione prenden-
do, per esempio, X1 = [a, b]. Definiamo, allora, una tassellazione attorno alla
diagonale Dn = ⋃n

i=1(Ei × Ei), con Ei = [a + b(i − 1)/n, a + bi/n].
Chiaramente per n che tende all’infinito Dn si assottiglia attorno alla diago-

nale, quindi P [X1 = X2] = P [(X1, X2) ∈ diag([a, b]×[a, b])] = limn→∞P [(X1, X2) ∈
Dn].

Sfruttando la relazione 2.3, allora:

P [(X1, X2) ∈ Dn] =
n∑

i=1
P [(X1, X2) ∈ Ei × Ei]

=
n∑

i=1
P [X1 ∈ Ei, X2 ∈ Ei]

=
n∑

i=1
[γᾱ(Ei)2 + (1 − γ)ᾱ(Ei)]

= γ
n∑

i=1
ᾱ(Ei)2 + (1 − γ)

n∑
i=1

ᾱ(Ei)]

∼n→+∞ γn
1
n2 + (1 − γ)n 1

n

Risulterà, di conseguenza, che

P [X1 = X2] = 1 − γ

Abbiamo ricavato, quindi, la formula di Ewens nel caso n = 2, che possiamo
riportare esplicitamente:

P [Π2 = 1, 2] = P [X1 = X2] = 1 − γ = 1
θ + 1

P [Π2 = 1, 2] = P [X1 ̸= X2] = γ = θ

θ + 1
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2.2 Caso base: n = 3

Studiamo, ora, anche il caso n = 3, per intuire il pattern che ci permetterà, poi,
di generalizzare al caso n generico.

Nel caso n = 3 le partizioni possibili dell’insieme {1, 2, 3} sono 5 e corri-
spondono, in termini delle variabili aleatorie, agli insiemi {X1 = X2 = X3},
{X1 = X2 ̸= X3}, {X2 = X3 ̸= X1}, {X1 = X3 ̸= X2},{X1 ̸= X2 ̸= X3}.

L’obiettivo iniziale è anche in questo caso quello di ricavare una formula per
la probabilità P [X1 ∈ A1, X2 ∈ A2, X3 ∈ A3] = µ(A1 ×A2 ×A3), con A1, A2, A3
arbitrari in B(R) e poi ricavare da essa la probabilità delle partizioni, che, come
vedremo, corrispondono alla formula di Ewens.

Anche in questo caso stiamo trattando con variabili aleatorie scambiabili
X1, X2, X3 e quindi possiamo sfruttare nuovamente la formula di De Finetti:

P [X1 ∈ A1, X2 ∈ A2, X3 ∈ A3] =
∫
P

p(A1)p(A2)p(A3)dq(p) = E[µ(A1)µ(A2)µ(A3)]

Introduciamo, ora, a partire da A1, A2, A3 la seguente partizione di R:

C1 = A1\(A2 ∪ A3),

C2 = A2\(A1 ∪ A3),

C3 = A3\(A1 ∪ A2),

C4 = (A1 ∩ A2)\A3),

C5 = (A2 ∩ A3)\A1),

C6 = (A1 ∩ A3)\A2),

C7 = A1 ∩ A2 ∩ A3,

C8 = (A1 ∪ A2 ∪ A3)c.

Posto µ(Ci) = µi, valgono le seguenti formule che per i valori di µ(Ai).

µ(A1) = µ1 + µ4 + µ6 + µ7

µ(A2) = µ2 + µ4 + µ5 + µ7

µ(A3) = µ3 + µ5 + µ6 + µ7

Si tratta, a questo punto, di calcolare la seguente speranza matematica:

E[(µ1 + µ4 + µ6 + µ7)(µ2 + µ4 + µ5 + µ7)(µ3 + µ5 + µ6 + µ7)]

Per farlo ricaviamo i valori di

E[µiµjµk], E[µ2
i µj ], E[µ3

i ] con i, j, k distinti.

Per ottenere il primo consideriamo la partizione Ci, Cj , Ck, (Ci, Cj , Ck)c e
rinominiamo i suoi insiemi come C ′

1, C ′
2, C ′

3, C ′
4.
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La legge di p, conseguentemente, sarà la densità di Dirichlet con n = 4 e
varranno, allora, le seguenti uguaglianze

E[µiµjµk] =
∫

∆3
z1z2z3

Γ(θ)
Γ(α′

1)Γ(α′
2)Γ(α′

3)Γ(α′
4)z

α′
1−1

1 z
α′

2−1
2 z

α′
3

3 (1 − z1 − z2 − z3)α′
4−1dz1dz2dz3

= α′
1α′

2α′
3

(θ)3↑
= αiαjαk

(θ)3↑

Dove abbiamo posto α′
i = α(C ′

i) e αi = α(Ci).
Analogamente per gli altri valori attesi:

E[µ2
i µj ] =

∫
∆2

z2
1z2

Γ(θ)
Γ(α′

1)Γ(α′
2)Γ(α′

3)z
α′

1−1
1 z

α′
2−1

2 (1 − z1 − z2)α′
3dz1dz2

= (α′
1)2↑α′

2
(θ)3↑

= (αi)2↑αj

(θ)3↑

E[µm
i ] =

∫ 1

0
zm

1
Γ(θ)

Γ(α′
1)Γ(α′

2)z
α′

1−1
1 (1 − z1)α′

2dz1 = (α′
1)m↑

(θ)m↑
= (αi)m↑

(θ)m↑

A questo punto, si tratta di sfruttare quanto appena calcolato per scrive-
re esplicitamente il valore della probabilità delle partizioni di tre elementi, in
maniera analoga a quanto fatto nel caso n = 2.

Come prima cosa, riorganizziamo le terne di indici (i, j, k) che appaiono
nella speranza matematica precedente: il primo indice corrisponde agli insiemi
Ci contenuti in A1, il secondo agli insiemi Cj in A2 e il terzo ai Ck in A3. Se
vogliamo scriverlo esplicitamente, i ∈ 1, 4, 6, 7, j ∈ 2, 4, 5, 7 e k ∈ 3, 5, 6, 7.

Introduciamo anche tre classi per le terne di indici (i, j, k): la prima con-
tenente le terne con tre indici distinti, la seconda con due indici uguali e il
terzo distinto e la terza con tre indici uguali (che corrisponde solo al caso
dell’intersezione dei tre insiemi).

La somma che risulterà sarà la seguente:

P [X1 ∈ A1, X2 ∈ A2, X3 ∈ A3] =

=
∑

(i,j,k)
prima classe

αiαjαk

(θ)3↑
+

∑
(i,j,k)

seconda classe

(αi)2↑αj

(θ)3↑
+

∑
(i,j,k)

terza classe

(αi)3↑
(θ)3↑

=

= 1
(θ)3↑

[
∑

(i,j,k)
distinti

αiαjαk +
∑

(i,j,k)
i=j ̸=k

(αi)2αk +
∑

(i,j,k)
i=j ̸=k

αiαk+

+
∑

(i,j,k)
i ̸=j=k

(αj)2αi +
∑

(i,j,k)
i ̸=j=k

αjαi +
∑

(i,j,k)
i=k ̸=j

(αi)2αj +
∑

(i,j,k)
i=k ̸=j

αiαj + α3
7 + 3α2

7 + 2α7]

Studiamo, ora, i singoli termini, raggruppandoli nei vari ordini. La somma
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dei termini di ordine tre produce

θ3

(θ)3↑
ᾱ(A1)ᾱ(A2)ᾱ(A3)

La somma dei termini di ordine due produce

θ2

(θ)3↑
[ᾱ(A1)ᾱ(A2 ∩ A3) + ᾱ(A2)ᾱ(A1 ∩ A3) + ᾱ(A3)ᾱ(A1 ∩ A2)]

Infine, abbiamo solo un termine di ordine 1 che è

2θ

(θ)3↑
ᾱ(A1 ∩ A2 ∩ A3)

Otteniamo, quindi, la formula:

P [X1 ∈ A1, X2 ∈ A2, X3 ∈ A3] =
= γ1ᾱ(A1)ᾱ(A2)ᾱ(A3)+

+ γ2[ᾱ(A1)ᾱ(A2 ∩ A3) + ᾱ(A2)ᾱ(A1 ∩ A3) + ᾱ(A3)ᾱ(A1 ∩ A2)]+
+ γ3ᾱ(A1 ∩ A2 ∩ A3)

dove γ1 = θ3/(θ)3↑, γ2 = θ2/(θ)3↑, γ3 = 2θ/(θ)3↑.

Notiamo, peraltro, che γ1 + 3γ2 + γ3 = 1, come vogliamo.

Dalla formula precedente si ricava, poi, la formula delle probabilità delle
partizioni:

P [X1 = X2 = X3] = γ1

P [Xi ̸= Xj = Xk] = γ2, i, j, k indici distinti in {1, 2, 3}

P [X1 = X2 = X3] = γ3

La dimostrazione di queste formule avviene per via geometrica, in maniera
analoga al caso n = 2. Dimostriamo, ad esempio, che P [X1 = X2 = X3] = γ3.
Consideriamo come spazio campionario X1 = [a, b] ⊆ R. In questo caso il
vettore aleatorio (X1, X2, X3) assumerà valori su un cubo di lato [a, b].

Notiamo immediatamente la seguente uguaglianza:

P [X1 = X2 = X3] = P [(X1, X2, X3) ∈ diag([a, b]3)]

Procediamo, quindi, costruendo attorno alla diagonale una tassellazione
Dn = ⋃n

i=1(Ei × Ei × Ei), con Ei = [a + b(i − 1)/n, a + bi/n].

Varrà, dunque, che
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P [(X1, X2, X3) ∈ Dn] =
n∑

i=1
P [(X1, X2, X3) ∈ Ei × Ei × Ei]

=
n∑

i=1
P [X1 ∈ Ei, X2 ∈ Ei, X3 ∈ Ei]

=
n∑

i=1
[γ1ᾱ(Ei)3 + 3γ2ᾱ(Ei)2 + γ3ᾱ(Ei)]

= γ1

n∑
i=1

ᾱ(Ei)3 + γ2

n∑
i=1

ᾱ(Ei)2 + γ3

n∑
i=1

ᾱ(Ei)

∼n→+∞ γ1n
1
n3 + γ2n

1
n2 + γ3n

1
n

Da cui ricaviamo immediatamente la formula voluta nel seguente modo:

P [X1 = X2 = X3] = P [(X1, X2, X3) ∈ diag([a, b]3)] =
= limn→∞P [(X1, X2, X3) ∈ Dn] = γ3

Le altre due formule si ricavano analogamente: per il caso Xi ̸= Xj = Xk,
ad esempio, l’unica differenza sarà che la tassellazione non avverrà più sulla
diagonale del cubo, ma sulla diagonale di una faccia del cubo.

Osserviamo, infine, che le formule trovate per le probabilità delle partizioni
corrispondono effettivamente alla formula di Ewens nel caso n = 3.

2.3 Caso generico: costruzione diretta

Potremmo ora procedere con altre deduzioni particolari, ad esempio ponendo
n = 4, tuttavia la situazione diventa poco gestibile a mano, dal momento che
il numero di partizioni di un insieme di n elementi cresce molto rapidamente
al crescere di n. Ad esempio mentre era 5 per n = 3, è 15 per n = 4, 52 per
n = 5, 203 per n = 6. Questi numeri prendono il nome di numeri di Bell e sono
trattati con maggiori dettagli nell’appendice B.

Ci occupiamo, quindi, di dedurre la formula di Ewens nel caso n generico.
Il passo di partenza è sempre lo stesso, cioè il Teorema di Rappresentazione

di De Finetti:

P [X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An] =
∫
P

p(A1)p(A2) . . . p(An)dq(p)

= E[µ(A1)µ(A2) . . . µ(An)]

Per calcolare esplicitamente la probabilità nel termine di sinistra possiamo
riscrivere la speranza matematica del termine di destra.

Il ragionamento è lo stesso dei casi n = 2 e n = 3. Effettuiamo, quindi, una
partizione dello spazio in cui si trovano gli insiemi Ai. Per farlo, introduciamo
degli insiemi Cj , a due a due disgiunti, costruiti nel seguente modo:
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Ai =
⋃

j∈Ii

Cj

Notiamo che, per ottenere una partizione, fissato n, avremo 2n insiemi Cj :
in particolare, C2n sarà (⊔2n−1

j=1 Cj)c.

Da questo seguirà che:

P [X1 ∈ A1, . . . , Xn ∈ An] = E[µ(A1) . . . µ(An)]

= E[µ
( ⋃

j1∈I1

Cj1

)
. . . µ

( ⋃
jn∈In

Cjn

)
]

= E[
∑

j1∈I1

µ(Cj1) · · ·
∑

jn∈In

µ(Cjn)]

=
∑

j1∈I1,...jn∈In

E[µ(Cj1) . . . µ(Cjn)]

A questo punto fissiamo il vettore di indici (j1, . . . , jn) ∈ {1, . . . , 2n} e in-
troduciamo il valore k che indica il numero di indici distinti. Quindi gli indici
(j1, . . . , jn) saranno n1 uguali a un certo valore r1 ∈ {1, . . . , 2n}, n2 uguali a
un certo valore r2 ∈ {1, . . . , 2n}, . . . , nk uguali a un certo valore rk. Possiamo,
allora, riscrivere nel seguente modo il nostro set di indici:

(j1, . . . , jn) = (r1, . . . , r1︸ ︷︷ ︸
n1 volte

, r2, . . . , r2︸ ︷︷ ︸
n2 volte

, . . . , rk, . . . , rk︸ ︷︷ ︸
nk volte

)

La speranza matematica E[µ(Cj1) . . . µ(Cjn)] ora diventa:

E[µ(Cj1) . . . µ(Cjn)] = E[µ(Cr1)n1 . . . µ(Crk
)nk ]

Per semplicità rinominiamo gli indici Cri = C ′
i e definiamo C ′

k+1 = (⋃k
j=1 Cj)c.

Usiamo anche la notazione µ(Cri) = µi e α′
i = α(C ′

i). Ci occupiamo, ora, di
calcolare la speranza matematica come integrale della densità di Dirichlet.

E[µ(C ′
1)n1 . . . µ(C ′

k)nk ] =

=
∫

∆k

zn1
1 . . . znk

k

Γ(θ)
Γ(α′

1) . . . Γ(α′
k)Γ(α′

k+1)z
α′

1−1
1 . . . z

α′
k

k (1 − z1 − · · · − zk)α′
k+1−1dz1 . . . dzk =

= (α′
1)n1↑ . . . (α′

k)nk↑
(θ)n↑

= α(Cr1)n1↑ . . . α(Crk
)nk↑

(θ)n↑

Grazie alla formula delle probabilità totali è possibile, dopo aver opportu-
namente ricostruito gli insiemi Aj dagli insiemi Ci, di esprimere la legge della
probabilità P [X1 ∈ A1, . . . , Xn ∈ An] con una formula di questo tipo:
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P [X1 ∈ A1, . . . , Xn ∈ An] =

=
n∑

k=1
γ

(n)
k

∑
(n1,...,nk)

∈Pk,n

Γ(n)
k (n1, . . . , nk) 1

P
(n)
k (n1, . . . , nk)

∑
I1,...,Ik

∈Π(n)
k

(n1,...,nk)

k∏
j=1

ᾱ
(⋂

i∈Ij

Ai

)

(2.4)

Dove k indica il numero di variabili aleatorie distinte, Pk,n è l’insieme delle
k-uple di numeri in {1, . . . , n} che sommano n, ni indica il numero di variabili
uguali a Xi e Π(n)

k (n1, . . . , nk) è l’insieme delle partizioni I1, . . . , Ik dell’insieme
{1, . . . , n} in cui Ij ha nj elementi. γ

(n)
k , Γ(n)

k (n1, . . . , nk), e P
(n)
k (n1, . . . , nk)

sono dei pesi che vogliamo ora studiare. Essi forniscono la probabilità con cui
viene scelta la partizione I1, . . . , Ik ∈ Π(n)

k (n1, . . . , nk). k, infatti, è il numero
di insiemi della partizione ed è scelto con probabilità γ

(n)
k , mentre n1, . . . , nk

sono le cardinalità degli insiemi della partizione e sono scelte con probabilità
Γ(n)

k (n1, . . . , nk). Fissati, poi, n1, . . . , nk la partizione I1, . . . , Ik è scelta con
probabilità uniforme 1/P

(n)
k (n1, . . . , nk).

Dato che la formula di Ewens fornisce proprio la probabilità delle partizioni,
e anche in analogia a quanto visto nei casi n = 2, 3, i coefficienti della legge di
probabilità corrispondono alla formula di Ewens. Vogliamo, quindi, vedere che:

Ewens(n)(n1, . . . , nk; θ) =
n∑

k=1
γ

(n)
k

∑
(n1,...,nk)

∈Pk,n

Γ(n)
k (n1, . . . , nk)/P

(n)
k (n1, . . . , nk)

Prima di farlo, però, è utile introdurre la struttura ricorsiva della formula di
Ewens.

2.4 Costruzione ricorsiva

Come suggerito dal modo in cui abbiamo introdotto la formula di Ewens, a par-
tire da casi elementari per poi generalizzare, la distribuzione di Ewens emerge
da una struttura ricorsiva.

In particolare, possiamo incominciare dando una definizione ricorsiva della
legge di probabilità (2.4). D’altra parte risulta molto più semplice studiare la
probabilità predittiva

P [Xn+1 ∈ An+1|X1, . . . , Xn]

che non la probabilità P [X1 ∈ A1, . . . , Xn ∈ An]. Se considero, infatti, delle
variabili aleatorie X1, . . . , Xn come nella precedente sezione, quindi distribuite
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con densità di Dirichlet n-dimensionale, vale la seguente formula [18]:

P [Xn+1 ∈ B|X1, . . . , Xn] = 1
θ + n

(θᾱ(B) +
n∑

i=1
δXi(B))

= θ

θ + n
ᾱ(B) + n

θ + n
( 1
n

n∑
i=1

δXi(B)) ∀B ∈ B(R)

La formula (2.4) la si ricava poi per disintegrazione utilizzando l’uguaglian-
za:

P [X1 ∈ A1, . . . , Xn ∈ An] =

=
∫

A1
· · ·
∫

An

P [Xn ∈ An|X1 = x1, . . . , Xn−1 = xn−1]dᾱ(x1, . . . , xn)

Il carattere ricorsivo delle formule di Ewens, d’altra parte, ha una motiva-
zione più profonda legata al processo del ristorante cinese [1].

Dal punto di vista intuitivo, il processo del ristorante cinese funziona nel
seguente modo: immaginiamo un ristorante cinese con infiniti tavoli, ciascuno
con infiniti posti. Al tempo 1 arriva il primo cliente e si siede a uno dei tavoli,
al tempo 2 arriva il secondo cliente e può decidere se sedersi nel tavolo già
occupato, o in un tavolo libero, al tempo 3 il terzo cliente ha di fronte una
scelta analoga, e così via per ogni cliente. Al tempo n, quindi, avremo che gli
n clienti sono partizionati in k ≤ n tavoli. Notiamo subito l’analogia con il
problema presentato nell’introduzione della tesi: basta pensare, infatti, i clienti
come gli animali di cui sto studiando la specie e i tavoli come gli insiemi che
raggruppano animali di una stessa specie.

Si osserva facilmente che il processo del ristorante cinese fornisce ricorsi-
vamente delle partizioni dell’insieme {1, . . . , n}, aggiungendo un elemento alla
volta, cioè facendo crescere n di uno alla volta. Le probabilità di una parti-
zione Πn di {1, . . . , n} sono, quindi, definite come probabilità predittive, una
volta assegnata la partizione Πn−1 di n − 1 elementi. In particolare, dato θ un
parametro positivo:

• θ/(θ + n − 1) è la probabilità che l’elemento n-esimo costituisca un nuovo
insieme nella partizione;

• ni/(θ +n−1) è la probabilità che l’elemento n-esimo finisca in un insieme
della partizione che contiene già ni elementi.

Queste probabilità si possono dimostrare per induzione.
Abbiamo tracciato uno schema in figura 2.1 per chiarificare la ricorsione

delle partizioni nel processo del ristorante cinese. A ogni livello corrisponde
n crescente a partire da 1; in ogni blocco abbiamo una k-upla n1, . . . , nk che
somma a n. nj è il numero di persone nel j-esimo tavolo occupato o, equivalen-
temente, la cardinalità del j-esimo insieme della partizione. Abbiamo colorato
le ultime due righe dello schema in modo che due k-uple che hanno lo stesso
k e lo stesso n abbiano lo stesso colore; ad esempio, sono colorate allo stesso
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modo (2, 2) e (1, 3) perché corrispondo a partizioni diverse di {1, . . . , 4} in due
sottoinsiemi. Per le prime tre righe non abbiamo ritenuto necessario aggiungere
i colori dal momento che per ogni k ed n fissati esiste sempre un unico modo
per scegliere n1, . . . , nk.

1

1,1

1,1,1

1, 1, 1, 1

1,1,1,1,1 1,1,1,2

1, 1, 2

1,2,2 1,1,3

1,2

2,2

2

3

1,3

2,3

4

1,4 5

Figura 2.1: Albero del processo del ristorante cinese

Un processo analogo a quello del ristorante cinese è il processo dell’urna
di Hoppe. Nell’urna di Hoppe poniamo inizialmente una palla nera di peso
θ > 0. A ogni passo n = 1, 2, . . . estraiamo una palla dall’urna con probabilità
proporzionale al suo peso. Se la palla estratta è quella nera, allora aggiungiamo
una palla di peso 1 di un colore non presente nell’urna, se la palla estratta è di
un altro colore, allora aggiungiamo una palla di peso 1 di quel colore. Dopo n
passi, avrò un risultato corrispondente al processo del ristorante cinese con n
clienti, con la sola differenza che le partizioni tra tavoli saranno partizioni tra
colori.

A questo punto possiamo ricavare la formula di Ewens come dicevamo, cioè
dai pesi della formula 2.4.

Studiamo, in primo luogo, il coefficiente γ
(n)
k : esso è la probabilità di avere k

insiemi considerando una partizione di {1, . . . , n}. Detto in altri termini, sia Kn

una variabile aleatoria che indica il numero di diversi insiemi di una partizione
di {1, . . . , n}, allora vale che

γ
(n)
k = P [Kn = k]

Rende più intuitiva l’analisi immaginare Kn come il numero di tavoli occupati al
tempo n (quando vi sono n clienti) nel processo del ristorante cinese. Notiamo
che Kn è una catena markoviana perché possiede la proprietà dell’assenza di
memoria, cioè la proprietà secondo cui

P [Kn+1 = k|Kn = jn, . . . , K1 = j1] = P [Kn+1 = k|Kn = jn]
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Questo è evidente dalla natura del processo. Infatti, nel momento in cui arriva
l’(n + 1)-esimo commensale, la probabilità di assegnazione del posto dipende
solo dal numero di tavoli occupati e da quanti clienti vi sono per tavolo. In
particolare, la catena di Markov Kn è descritta da una legge ricorsiva contenuta
nel seguente risultato:

Teorema 2.4.1. {Kn}n≥1 è una catena di Markov per cui vale:

P [K1 = 1] = 1, P [Kn+1 = j|Kn = k] =


θ/(θ + n) se j = k + 1
n/(θ + n) se j = k

0 se j ̸= k, k + 1

Dove θ > 0 è il parametro del processo del ristorante cinese corrispondente.

Possiamo, per esempio, vedere quali sono i valori di γ
(n)
k per n = 2:

γ
(2)
1 = P [K2 = 1] = P [K2 = 1|K1 = 1] = 1

θ + 1

γ
(2)
2 = P [K2 = 2] = P [K2 = 2|K1 = 1] = θ

θ + 1

Dimostriamo, ora, la scrittura generica di γ
(n)
k . Per farlo ci serviremo dei

numeri di Stirling di prima specie s(n, k) la cui teoria è approfondita nell’ap-
pendice A; in particolare useremo il teorema A.0.1.

Diamo, quindi, il seguente risultato:

Teorema 2.4.2. Se {Kn}n≥1 è una catena di Markov con probabilità assegnata

P [K1 = 1] e P [Kn+1 = j|Kn = k] =


θ/(θ + n) se j = k + 1
n/(θ + n) se j = k

0 se j ̸= k, k + 1

Allora vale che
P [Kn = k] = |s(n, k)|θk

(θ)(n)↑

Dimostrazione. La dimostrazione avviene per induzione su n:

• n = 1, ovvio.

• Sia n > 1 e valga l’ipotesi induttiva per n.
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Sfruttiamo la formula delle probabilità totali:

P [Kn+1 = k] = P [Kn+1 = k|Kn = k]P [Kn = k] + P [Kn+1 = k|Kn = k − 1]P [Kn = k − 1]

= n

θ + n

|s(n, k)|θk

θ(n)↑
+ θ

θ + n

|s(n, k)|θk−1

θ(n)↑

= θk[n|s(n, k)| + |s(n, k − 1)|]
θ(n+1)↑

= θk|s(n + 1, k)|
θ(n+1)↑

Abbiamo ricavato, quindi, che

γ
(n)
k = θk|s(n, k)|

θ(n)↑
(2.5)

Studiamo, ora, i coefficienti Γ(n)
k (n1, . . . , nk).

Dato (ν1, ν2, . . . , νk) il vettore aleatorio a valori in Pn,k, Γ(n)
k (n1, . . . , nk) è

definito nel seguente modo:

Γ(n)
k (n1, . . . , nk) = P [ν1 = n1, . . . , νk = nk|Kn = k]

Ci interessa, quindi, calcolare la cardinalità dell’insieme Pn,k, che contiene
tutte le possibili k-uple di numeri in {1, . . . , n} che sommano a n. Queste k-uple
entrano in gioco nel teorema A.0.1 sui numeri di Stirling. Da esso segue che

Γ(n)
k (n1, . . . , nk) ∝ 1

n1 · · · · · nk

Tuttavia, dobbiamo osservare che, a differenza del teorema, noi stiamo conside-
rando solamente le k-uple ordinate (n1, . . . , nk), quindi per calcolare Γ(n)

k (n1, . . . , nk)
dobbiamo dividere per il numero di permutazioni di ogni k-upla.

Notiamo che per fare ciò è sufficiente dividere per∏n
j=1 mj !, dove gli mj , j =

1, . . . , n sono definiti come in 2.2. Quindi, sfruttando il teorema A.0.1 come
dicevamo, varrà che

Γ(n)
k (n1, . . . , nk) = n!

|s(n, k)|
1∏k

i=1 ni
∏n

j=1 mj !
(2.6)

Si tratta ora, infine, di calcolare gli ultimi coefficienti 1/P
(n)
k (n1, . . . , nk) che

corrispondono a una probabilità uniforme sugli insiemi Π(n)
k (n1, . . . , nk), quindi

varrà semplicemente che

P
(n)
k (n1, . . . , nk) = card(Π(n)

k (n1, . . . , nk))
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Da un semplice conteggio segue che

P
(n)
k (n1, . . . , nk) = card(Π(n)

k (n1, . . . , nk)) =
(

n

n1 . . . nk

)
1∏n

j=1 mj !

Sostituiamo, quindi, tutti i coefficienti nella formula 2.4:

P [X1 ∈ A1, . . . , Xn ∈ An] =

=
n∑

k=1

|s(n, k)|θk

(θ)n ↑
∑

(n1,...,nk)
∈Pn,k

n!
|s(n, k)|

1(∏k
i=1 ni!

)(∏n
j=1 mj !

)
(∏k

i=1 ni

)(∏n
j=1 mj !

)
n! ·

·
∑

I1,...,Ik

∈Π(n)
k

(n1,...,nk)

k∏
j=1

ᾱ(
⋂

i∈Ij

Ai)

=
n∑

k=1

θk

(θ)n ↑
∑

(n1,...,nk)
∈Pn,k

k∏
i=1

(ni − 1)!
∑

I1,...,Ik

∈Π(n)
k

(n1,...,nk)

k∏
j=1

ᾱ(
⋂

i∈Ij

Ai)

=
n∑

k=1

∑
(n1,...,nk)

∈Π(n)
k

θk

(θ)n ↑

k∏
i=1

(ni − 1)!
∑

I1,...,Ik

∈Π(n)
k

(n1,...,nk)

k∏
j=1

ᾱ(
⋂

i∈Ij

Ai)

=
n∑

k=1

∑
(n1,...,nk)

∈Π(n)
k

Ewens(n)(n1, . . . , nk; θ)
∑

I1,...,Ik

∈Π(n)
k

(n1,...,nk)

k∏
j=1

ᾱ(
⋂

i∈Ij

Ai)

Abbiamo, quindi, ricavato, come volevamo, la formula di Ewens come peso
della legge di probabilità 2.4 delle X1, . . . , Xn.

Notiamo che, senza effettuare le semplificazioni, abbiamo ottenuto una de-
finizione "estesa" della formula di Ewens:

Ewens(n)(n1, . . . , nk; θ) =
n∑

k=1

|s(n, k)|θk

(θ)n ↑
·

·
∑

(n1,...,nk)
∈Pn,k

n!
|s(n, k)|

1(∏k
i=1 ni!

)(∏n
j=1 mj !

)
(∏k

i=1 ni

)(∏n
j=1 mj !

)
n!

Essa, infatti, ci permette di dimostrare in maniera semplice il legame tra la
formula di Ewens 2.1 e la formula di Ewens parziale 2.2. Per ottenere il 2.2
da 2.1 dobbiamo moltiplicare la formula di Ewens per la probabilità delle singole
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partizioni P
(n)
k (n1, . . . , nk) che non è considerata in 2.2:

θk

θ(n)↑

k∏
i=1

(ni − 1)!
(

n

n1 . . . nk

)
1

m1! . . . mk! =
∏k

j=1 θmj

θ(n)↑

n!(∏n
j=1 mj !

)∏n
j=1 jmj

= n!
θ(n)↑

n∏
j=1

θmj

mj !jmj

(2.7)

Possiamo anche notare che la struttura ricorsiva trova riscontro nella se-
guente relazione fondamentale:

Proposizione 2.4.1. Definita µn(A1 × · · · × An) = P [X1 ∈ A1, . . . , Xn ∈ An],
vale che

µn+1(A1 × · · · × An × X1) = µn(A1 × · · · × An)

La dimostrazione segue dalla linearità della misura µ rispetto alla somma.
Possiamo, infine, fare una semplice verifica della normalizzazione della for-

mula di Ewens.
Per farlo usiamo il teorema (A.0.1).

n∑
k=1

∑
partizione
{B1,...,Bk}
di {1,...,n}

P [Πn = B1, . . . , Bk] =
n∑

k=1

∑
partizione
{B1,...,Bk}
di{1,...,n}

θk

(θ)n↑

k∏
j=1

(nj − 1)!

=
n∑

k=1

∑
partizione
{B1,...,Bk}
di{1,...,n}

θk

(θ)n↑

k∏
j=1

(nj − 1)! =

=
n∑

k=1

θk

(θ)n↑

∑
(n1,...,nk)∈Nk:
n1+···+nk=n

1
k!

(
n

n1 . . . nk

)
k∏

j=1
(nj − 1)!

=
n∑

k=1

θk

(θ)n↑

∑
(n1,...,nk)

n!
k!

1
n1 . . . nk

=
n∑

k=1

θk|s(n, k)|
(θ)n ↑

= 1

2.5 Costruzione Monte Carlo
La costruzione che abbiamo dato precedentemente della formula di Ewens evi-
denzia aspetti computazionali interessanti che ci hanno suggerito l’inserimento
di una deduzione "Monte Carlo" della formula. Nelle sezioni precedenti, in-
fatti, abbiamo osservato che la formula di Ewens fornisce le probabilità per
le partizioni dell’insieme {1, . . . , n}. È possibile, quindi, sfruttare un metodo
Monte Carlo simulando la generazione casuale delle partizioni e confrontando la
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probabilità in senso frequentista ottenuta dagli esperimenti con le aspettative
teoriche della formula di Ewens. La simulazione, peraltro, restituisce il senso
sperimentale racchiuso nella formula di Ewens dal momento che ne ricaviamo i
valori da dei dati di frequenza.

L’implementazione, in linea concettuale, non è complessa: essa si basa sulla
formula 2.4, cioè sulla seguente scrittura della formula di Ewens che si ricava
dalla legge di probabilità:

Ewens(n)(n1, . . . , nk; θ) =
n∑

k=1
γ

(n)
k

∑
(n1,...,nk)

∈Pk,n

Γ(n)
k (n1, . . . , nk)/P

(n)
k (n1, . . . , nk)

Questa formula regola, infatti, la probabilità delle generazioni casuali delle
partizioni di {1, . . . , n} con cardinalità degli insiemi delle partizioni n1, . . . , nk

e parametro di probabilità θ.
Essa fornisce una procedura algoritmica in tre step per la costruzione di una

partizione casuale con probabilità assegnata:

(A) Generazione di k ∈ {1, . . . , n} numero di insiemi della partizione. Co-
me abbiamo ricavato precedentemente, k viene generato con probabilità
γ

(n)
k = θk|s(n, k)|/θ(n)↑.

(B) Fissato k, generazione di n1, . . . , nk ∈ {1, . . . , n} con n1 + · · · + nk = n,
cardinalità degli insiemi della partizione. Questi numeri vengono generati
con probabilità Γ(n)

k (n1, . . . , nk) = n!/(|s(n, k)|∏n
i=1 ni

∏n
j1 mj !).

(C) Fissati n1, . . . , nk, generazione della partizione B1, . . . , Bk di {1, . . . , n}
con insiemi di cardinalità n1, . . . , nk con probabilità uniforme.

L’implementazione avviene, quindi, tramite la costruzione di tre procedure
che corrispondono ai tre passi dell’algoritmo. L’esecuzione delle tre procedu-
re in sequenza permette di generare una partizione casuale con la probabilità
desiderata. L’implementazione del metodo Monte Carlo consiste, poi, nell’ite-
razione per un numero alto di volte di questa procedura e nella misurazione
della frequenza di apparizione di ciascuna partizione. Normalizzando, poi, per
il numero totale di iterazioni si ottiene la probabilità "frequentista" di ciascu-
na partizione. Per la legge dei grandi numeri, all’aumentare del numero di
iterazioni la probabilità frequentista converge al valore teorico della speranza
matematica che, in questo caso, corrisponde ai valori della formula di Ewens.

Riportiamo, ora, alcuni risultati che abbiamo ottenuto effettuando gli espe-
rimenti.

Ciò che otteniamo tramite le nostre simulazioni sono tre vettori contenenti il
primo la lista delle partizioni, il secondo i valori teorici attesi, ottenuti tramite
la formula di Ewens, e il terzo le frequenze, normalizzate per il numero di
esperimenti, di ciascuna partizione.

Ad esempio, effettuando 10000 esperimenti, fissati n = 5 e θ = 2, otte-
niamo la seguente tabella delle partizioni (la tabella integrale comprenderebbe
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52 entrate, noi riportiamo le prime 5 associando a ogni partizione la stima di
frequenza e il valore atteso teorico):

Partizioni Frequenza relativa Valore atteso teorico
{1, 3}, {2}, {4}, {5} 0.0221 0.0222
{1, 2}, {3}, {4}, {5} 0.0215 0.0222
{1}, {2, 3, 4, 5} 0.0325 0.0333
{1}, {2}, {3}, {4}, {5} 0.0408 0.0444
{1, 5}, {2}, {3}, {4} 0.0231 0.0222
. . . . . . . . .

Possiamo aspettarci, come conseguenza della legge dei grandi numeri, che
all’aumentare del numero di esperimenti l’errore effettuando stimando le proba-
bilità con il metodo Monte Carlo diminuisca. Ciò effettivamente avviene, come
mostrato nella figura 2.2 dove abbiamo riportato l’errore in norma due in rela-
zione al numero di iterazioni. Notiamo anche che la decrescita dell’errore non
è monotona per via del fatto che i risultati di ogni esperimento sono aleatori.

Figura 2.2: Errore metodo Monte Carlo

I dettagli sull’implementazione e il codice usato sono riportati nell’appendi-
ce C.

Le conseguenze computazionali della formula di Ewens, d’altra parte, so-
no molto rilevanti dal momento che lo studio delle partizioni di un insieme ha
riscontri importanti in combinatoria e permette di costruire algoritmi imple-
mentativi per applicazioni matematiche [11]. Ad esempio, la formula di Ewens
si può dedurre anche tramite la formula di Faà di Bruno che restituisce il
valore della derivata k-esima mista f(g(x))(k). L’ordine delle derivate nello svi-
luppo della derivata mista è lo stesso degli n1, . . . , nk che abbiamo considerato
nella costruzione della formula di Ewens e questo suggerisce un’applicazione
computazionale della formula.
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Capitolo 3

Modello di Wright-Fisher

Una delle applicazioni più interessanti della formula di Ewens è allo studio della
genetica delle popolazioni. La formula, infatti, nasce proprio in quest’ambito,
dal momento che nella derivazione originale di Ewens essa è usata per ana-
lizzare il campionamento di diversi alleli di un singolo gene all’interno di una
popolazione.

La formula nella sua interpretazione originaria emerge in un modello di
dinamica delle popolazioni, il modello di Wright-Fisher [6], che è l’oggetto del
presente capitolo.

3.1 Versione base del modello
Per descrivere il modello introduciamo le seguenti definizioni:

Definizione 3.1.1 (locus genico). Intendiamo per locus genico la posizione
di un gene all’interno del genoma di un organismo, per esempio possiamo
immaginarlo come la sequenza di nucleotidi che compongono il gene.

Definizione 3.1.2 (allele). Intendiamo come allele una manifestazione di un
gene, per esempio negli esperimenti di Mendel sui piselli due alleli di uno stesso
gene sono l’essere ruvidi o l’essere lisci.

Definizione 3.1.3 (fitness di un individuo). La fitness di un individuo è la
sua abilità a sopravvivere e riprodursi; nel nostro caso parliamo di evoluzione
neutra, cioè facciamo l’ipotesi che le mutazioni non abbiano influenza sulla
fitness dell’individuo.

Definizione 3.1.4 (individui diploidi). Sono diploidi tutti quegli individui che,
come gli esseri umani, possiedono due copie del materiale genetico in ogni cel-
lula: in una popolazione di N individui diploidi avremo quindi 2N copie del
materiale genetico.

Dato un locus genico, il modello di Wright-Fisher studia la distribuzione
degli alleli per il locus in una popolazione diploide di dimensione costante N con
generazioni non sovrapponibili e accoppiamenti casuali. Nel modello si suppone
che questi abbiano tutti la stessa fitness. Inoltre, inizialmente faremo l’ipotesi
che esistano due soli possibili alleli A e a e non possano avvenire mutazioni.
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Dal punto di vista probabilistico possiamo rappresentare la popolazione alla
n-esima generazione come un insieme di 2N palle in un’urna: i di queste saranno
segnate come A e 2N − i come a, in base all’allele relativo ad ogni copia genica.
A questo punto, per costruire la (n + 1)-esima generazione estraiamo 2N palle
dall’urna con reimmissione.

Definiamo, ora, Xn una variabile aleatoria che indica il numero di alleli A
nella generazione n-esima: vogliamo studiare il comportamento di Xn. Notia-
mo, innanzitutto, che Xn è una catena di Markov, dato che vale la proprietà
di assenza di memoria; inoltre Xn ha distribuzione binomiale con parametro
pi = i/2N , quindi varrà che:

P [Xn+1 = j|Xn = i] =
(

2N

j

)
pj

i (1 − pj)2N−j

Una proprietà che può essere interessante studiare è l’eterozigosi, che defi-
niamo come segue:
Definizione 3.1.5 (eterozigosi). Chiamiamo eterozigosi la probabilità che due
copie distinte dello stesso locus genico corrispondano, al tempo n, a due alleli
differenti. Il valore di eterozigosi è descritto da una variabile aleatoria che nel
nostro modello è la seguente:

H0
n = 2Xn(2N − Xn)

2N(2N − 1)

Il valore atteso dell’eterozigosi è descritto dal seguente teorema:
Teorema 3.1.1. Sia h(n) = E(H0

n) il valore atteso dell’eterozigosi al tempo n,
nel modello di Wright-Fisher varrà che:

h(n) =
(
1 − 1

2N

)n
· h(0)

3.2 Coalescenza e genealogia
Vogliamo studiare, ora, la genealogia degli individui. Immaginiamo sempre ogni
individuo come una palla segnata con A o a in base all’allele corrispondente.
Ricordiamo che la generazione di un individuo avviene tramite l’estrazione di
una palla all’interno dell’urna della generazione precedente: chiamiamo geni-
tore di un individuo la palla della generazione precedente corrispondente. In
termini genetici, indichiamo come genitore l’individuo da cui viene ereditato il
carattere studiato, cioè nel nostro caso l’allele A o a. Dato che le estrazioni
avvengono con reimmissione, è possibile che due individui abbiano lo stesso
genitore, corrispondente all’estrazione della stessa palla. Indichiamo poi come
lignaggio la sequenza degli "antenati" di un dato individuo; notiamo che due
lignaggi possono fondersi quando due individui possiedono un antenato comune.

Innanzitutto possiamo osservare che se la popolazione è sufficientemente
ampia, cioè N è sufficientemente grande, la probabilità che in un campione di
k individui due abbiano lo stesso genitore è circa k(k − 1)/2 · 2N .

Inoltre vale il seguente teorema sul tempo per ottenere k lignaggi:
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Teorema 3.2.1. Il tempo tk per ottenere k lignaggi è una variabile aleatoria
con distribuzione esponenziale di media 2/k(k-1).

Un concetto fondamentale nello studio della genealogia è quello di coale-
scenza: parliamo di coalescenza quando abbiamo la fusione di due lignaggi per
via dell’individuazione di un antenato comune.

Possiamo indicare con Tj il primo momento in cui abbiamo j lignaggi. In tal
caso T1 indica il tempo corrispondente al più recente antenato comune di tutta
la popolazione. Facciamo attenzione al fatto che stiamo misurando i tempi
all’indietro, cioè fissiamo come tempo 0 il momento attuale e facciamo scorrere
in avanti il tempo mentre ripercorriamo all’indietro le generazioni, quindi Ti >
Tj se i < j.

Possiamo fare un esempio calcolando il tempo medio trascorso con k lignaggi
per k = 2, 3, 4, 5 sfruttando il teorema 3.2.1:

E[t2] = 1 E[t3] = 1
3 E[t4] = 1

6 E[t5] = 1
10

Per un campione di n individui varrà che T1 = t2 + · · · + tn, quindi il valore
medio del tempo trascorso dal più recente antenato comune è

E[T1] =
n∑

k=2

2
k(k − 1) = 2

n∑
k=2

( 1
k − 1 − 1

k

)
= 2

(
1 − 1

n

)
Questa quantità tende a 2 per n → ∞: questo significa che il tempo im-

piegato per l’ultima coalescenza è almeno la metà di quello impiegato per la
coalescenza dell’intera popolazione.

Le analogie con la formula di campionamento di Ewens iniziano ora dal-
l’osservazione che lo stato della coalescenza a un tempo Tj di una popolazione
di n individui può essere visto come una partizione dell’insieme {1, . . . , n}. Al
tempo 0 la partizione consisterà in n singoletti {1}, . . . , {n} e ogni coalescenza
corrisponderà all’unione di due partizioni.

Possiamo fare già alcune considerazioni sul comportamento di queste par-
tizioni: chiamiamo En l’insieme delle partizioni di {1, . . . , n} e, dato ξ ∈ En,
sia |ξ| il numero di insiemi in ξ. Indichiamo, inoltre, con ξn

i la partizione di
{1, . . . , n} al tempo Ti. Allora vale il seguente teorema:

Teorema 3.2.2. Sia ξ una partizione di {1, . . . , n} con |ξ| = i, allora

P [ξn
i = ξ] = cn,iw(ξ)

Dove w(ξ) = λ1! . . . λi! con λi, . . . , λi sono le cardinalità degli i insiemi della
partizione e la costante cn,i è scelta in modo da far sì che la somma delle
probabilità faccia 1.

Valgono anche i seguenti due risultati:

Teorema 3.2.3. La probabilità che l’antenato comune più recente di un cam-
pione di n individui sia lo stesso dell’intera popolazione tende a (n − 1)(n + 1)
al tendere dell’ampiezza della popolazione a infinito.
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Teorema 3.2.4. Per ricostruire la partizione ξn
i da ξn

i−1 = {A1, . . . , Ai−1}
scegliamo casualmente un insieme selezionando Aj con probabilità (λj − 1)(n −
i−1) dove λj = |Aj | e lo dividiamo in due sottoinsiemi di dimensioni k e λj −k
con k scelto uniformemente in {1, 2, . . . , λj − 1}.

3.3 Modello a infiniti alleli

Per introdurre le mutazioni nel nostro modello facciamo l’ipotesi degli "infiniti
alleli": secondo questa supposizione, infatti, esiste un numero di possibili alleli
talmente elevato (idealmente infinito) che ci permette di supporre che ogni
mutazione porti a un allele di un nuovo tipo non ancora registrato. Questa
assunzione è motivata da un semplice calcolo probabilistico: immaginiamo che
un gene consista in 500 nucleotidi, ciascuno dei quali può avere una base diversa.
Il numero di possibili sequenze di DNA sarà

4500 = 10500 log4/log10 = 10301

Per ciascuna di queste sequenze, ve ne sono 3 · 500 = 1500 che possono essere
ottenute da un singolo cambiamento di base, quindi la probabilità di tornare
alla sequenza iniziale in 2 mutazioni è 1/1500, da cui l’assunzione che il numero
degli alleli possibili è essenzialmente infinito.

Il modello a infiniti alleli si sfrutta quando è necessario usare metodi indiretti
per dedurre differenze tra gli individui. Per esempio, si sfrutta per degli studi
sul numero di alleli differenti in un campione di popolazione studiato. Il punto
di partenza è la cosiddetta partizione allelica, in cui si danno dei valori mj pari
al numero di alleli con j manifestazioni. Ad esempio, negli studi [4] e [16] si è
osservata per la Drosophila la seguente partizione allelica:

m1 = 10, m2 = 3, m4 = 1, m32 = 1

Cioè sono stati trovati 23 diversi alleli per 60 individui: 10 alleli avevano una
sola manifestazione, 3 alleli avevano 2 manifestazioni, un solo allele appariva 4
volte e un ultimo allele appariva 32 volte.

Notiamo che gli mj corrispondono esattamente ai valori definiti in 2.2 e
infatti ci condurranno alla stessa formula applicata al calcolo della probabilità
di una certa partizione allelica.

Il modello a infiniti alleli si usa anche, ad esempio, per studiare le sequenze
di DNA senza ricombinazione: in questo caso, non conteremo più il numero di
alleli differenti ma il numero di aplotipi, cioè le possibili varianti delle sequenze
nucleotidiche.

È nel modello a infiniti alleli che trova applicazione la formula di campio-
namento di Ewens che può essere usata per prevedere il comportamento della
partizione allelica di una popolazione.

38



3.4 Formula di Ewens nel modello di Wright-Fisher
Come visto precedentemente, anche nel modello a infiniti alleli se vi sono k
lignaggi la coalescenza avviene con probabilità

k(k − 1)
2

1
2N

Tuttavia, ora, in seguito a una mutazione, un lignaggio può scomparire con
probabilità kµ, dove µ è il tasso di mutazione. Riscalando il tempo per 2N ,
otteniamo che i tassi di coalescenza e mutazione sono rispettivamente k(k−1)/2
e kθ/2 dove θ = 4Nµ.

Questo modello si può rileggere come uno schema di urna di Hoppe o, equi-
valentemente, un processo del ristorante cinese. Infatti, è sufficiente immaginare
le discendenze come la selezione da un’urna di Hoppe dove vi è una palla nera
di massa θ, corrispondente al caso di una mutazione, e una palla colorata di
massa 1 per ogni lignaggio. Le palle vengono scelte con reimmissione con pro-
babilità proporzionale al loro peso: alla scelta di una palla colorata si associa
la prosecuzione del lignaggio corrispondente, mentre alla palla nera una nuova
a mutazione. Proseguendo a ritroso nell’urna di Hoppe incontriamo una mu-
tazione con probabilità θ/(θ + k) e una coalescenza con probabilità k/(θ + k)
che corrispondono ai tassi precedenti. Infatti, posto che abbiamo k + 1 lignag-
gi nel momento in cui consideriamo la coalescenza, il rapporto tra il tasso di
coalescenza e quello di mutazione è proprio pari alla probabilità di coalescenza.

Vale, quindi, il seguente risultato:

Teorema 3.4.1. La relazione genealogica tra k lignaggi nel modello a infiniti
alleli può essere simulata attraverso k ripetizioni dell’esperimento dell’urna di
Hoppe.

Per studiare la popolazione nel modello introduciamo la variabile aleatoria
Kn che misura il numero di diversi alleli in un campione di dimensione n: essa
corrisponde alla variabile che avevano introdotto per misurare il numero di
partizioni quando abbiamo ricavato la formula di Ewens.

Asintoticamente il comportamento di Kn è descritto dal seguente teorema:

Teorema 3.4.2. Fissato il valore di θ valgono le seguenti equivalenze asintoti-
che per n → ∞

E[Kn] ∼ θ log n V ar(Kn) ∼ θ log n

Una conseguenza interessante del teorema è che Kn/logn è uno stimatore
asintoticamente normale del tasso di mutazione riscalato θ. Tuttavia, si dimo-
stra che la deviazione standard dello stimatore è dell’ordine di 1/

√
log n: ciò

significa che se, per esempio, il valore reale di θ è 1 e vogliamo stimarlo con un
errore di 0, 1, allora dobbiamo avere un campione di dimensione e100, portando
quindi a tempi di calcolo molto grandi. Tuttavia non esiste un altro modo più
veloce per stimare θ dai dati.

Mentre il teorema precedente descriveva il comportamento asintotico del
numero di alleli, la distribuzione di essi ci è data proprio dalla formula di Ewens,
che riassumiamo nel seguente teorema:
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Teorema 3.4.3 (formula di campionamento di Ewens). Sia mi il numero di
alleli presenti i volte in un campione di dimensione n e quindi (m1, . . . , mn) la
partizione allelica della popolazione. Sia, inoltre, θ = 4Nµ il tasso di mutazione
riscalato. Allora, la probabilità assegnata alla partizione allelica è data dalla
seguente formula:

p(m1, . . . , mn; θ) = n!
(θ)(n)↑

n∏
j=1

θmj

jmj mj !

La dimostrazione è ovvia per via delle analogie già mostrate con la formula
di Ewens per le partizioni, in particolare abbiamo già rilevato che la costruzione
della partizione allelica avviene tramite un processo di urna di Hoppe.

Possiamo fare un esempio di applicazione per un caso semplice, ponendo
n = 2. Stiamo, quindi, studiando due individui: le possibili partizioni alleliche
(m1, m2) sono quindi (0, 1), che corrisponde a due alleli uguali, e (2, 0), che
corrisponde a due alleli differenti. Le probabilità calcolate tramite la formula
di Ewens sono rispettivamente 1/(θ + 1) e θ/(θ + 1), quindi la probabilità di
omozigosi, cioè due individui identici è di 1/(θ + 1). Se assumiamo, quindi, che
le mutazioni avvengano con probabilità 2µ, la probabilità di avere coalescenza
prima di mutazione è effettivamente

1
2N

2µ + 1
2N

= 1
1 + θ

come ci aspettavamo.
A questo punto, ricordiamo il seguente risultato, analogo a 2.5, il quale

fornisce la distribuzione del numero di alleli distinti all’interno di un campione
di n individui:

Teorema 3.4.4.
Pθ[Kn = k] = θk

θ(n)↑
|S(n, k)|

Combinando questo risultato con la formula di Ewens otteniamo il seguente
teorema:

Teorema 3.4.5.

Pθ[m1, . . . , mn|Kn = k] = n!
|s(n, k)|

n∏
j=1

(1
j

)mj 1
mj !

La formula ci permette di notare che la distribuzione allelica (m1, . . . , mn)
non dipende dal parametro θ.

Infine, facciamo alcune osservazioni sulla stima di θ basata sul valore di Kn.
Vale infatti il seguente risultato:

Teorema 3.4.6. Kn è una statistica sufficiente per stimare θ.

Per stimare θ a partire da Kn usiamo il seguente stimatore di massima
verosimiglianza
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Ln(θ, k) = θk

θ(n)↑
|s(n, k)|

Che è la likelihood di osservare Kn = k quando il vero parametro è θ. Ri-
cavando il valore massimo dello stimatore e calcolandone la derivata otteniamo
che:

k = θ

θ
+ θ

θ + 1 + · · · + θ

θ + n − 1 = E[Kn]

Quindi lo stimatore di massima verosimiglianza θ̂ è il valore di θ che fa sì che il
numero medio di alleli sia uguali al numero di alleli osservati.

Le proprietà degli stimatori di massima verosimiglianza ci dicono che asinto-
ticamente vale che E[θ̂] e V ar(θ̂) = 1/I(θ̂), dove I(θ) è l’informazione di Fisher.
Si calcola facilmente che

I(θ) = 1
θ2 V ar(Kn)

Quindi osserviamo, infine, per il teorema 3.4.2, che se n → ∞, V ar(θ̂) → 0 ∼
1/ log n, quindi aumentando il campione la varianza dello stimatore θ tende a
0 ma converge lentamente.
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Conclusioni e orizzonti

In questa tesi abbiamo descritto le proprietà, la derivazione e le applicazio-
ni della formula di campionamento di Ewens per lo studio della probabilità
delle partizioni di un insieme discreto {1, . . . , n}. Nel primo capitolo introdut-
tivo abbiamo presentato la costruzione del processo di Dirichlet a partire dalla
struttura delle leggi finito-dimensionali, dando il concetto di variabili aleatorie
scambiabili. Ci siamo poi dedicati, nel secondo capitolo, al cuore della tesi cioè
la deduzione della formula di Ewens, che è avvenuta per via diretta tramite
la struttura delle leggi finito-dimensionali del processo di Dirichlet e per via
ricorsiva tramite il processo di ristorante cinese. Abbiamo, inoltre, inserito an-
che una deduzione Monte Carlo della formula a partire da alcuni esperimenti
di generazione casuale delle partizioni di {1, . . . , n}. Nel terzo capitolo, infine,
abbiamo presentato un’applicazione della formula di campionamento di Ewens
a un modello di dinamica delle popolazioni, il modello di Wright-Fisher, dove
la formula di Ewens fornisce la distribuzione di una data partizione allelica al-
l’interno di una popolazione. L’applicazione agli studi genetici, oltre che fornire
un utilizzo concreto della formula, permette anche di risolvere uno dei problemi
di apertura, cioè lo studio della biodiversità di una popolazione a partire da un
campione osservato: il parallelismo è semplice, invece che gli alleli è sufficiente
considerare le specie degli individui e si riottiene che queste si distribuiscono
secondo la formula di Ewens con un parametro θ che è legato al tasso di os-
servazione di nuove specie. In questo modo si può allora risolvere il problema
degli studi statistici in una popolazione di cui non si conosce a priori lo spa-
zio campionario: è sufficiente virare l’analisi dal campione in sé alle partizioni
aleatorie dei suoi elementi; invece che associare, quindi, a ogni elemento osser-
vato una manifestazione nello spazio campionario, si associano tra loro in una
stessa partizione gli elementi osservati che condividono la stessa proprietà: lo
spazio campionario studiato sarà quindi sempre noto perché sarà l’insieme delle
partizioni di {1, . . . , n}, dove n è il numero di osservazioni.

La versatilità della formula di Ewens avrebbe permesso e meritato una trat-
tazione ben più ampia di quella fatta in questo elaborato. Approfittiamo, però,
di questa sezione per presentare alcune possibili orizzonti futuri, sia in ambito
applicativo che di ricerca, a partire dal lavoro svolto in questa tesi. Una pro-
spettiva di ricerca più astratta riguarda un argomento che abbiamo solamente
sfiorato in questa tesi e che prende il nome di calcolo umbrale (in inglese umbral
calculus). Si tratta di un tema di ricerca legato ai fattoriali ascendenti e, quindi,
ai numeri di Stirling. Una domanda che ci si potrebbe porre a partire da quanto
trattato, infatti, è se vi sono altri modi per scrivere la catena di Markov del
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numero di insiemi in una partizione di n elementi Kn. In particolare avevamo
ricavato che i suoi valori di probabilità sono i gamma

(n)
k la cui espressione è con-

tenuta in 2.5. Dall’osservazione della nostra deduzione si può, infatti, pensare
che i fattoriali ascendenti rivestano un ruolo più centrale. Il calcolo umbrale si
occupa di studiare il parallelismo tra le equazioni polinomiali e altre tecniche
tra cui appunto il fattoriale ascendente. Per esso vale, ad esempio, la seguente
relazione:

(x + y)n↑ =
n∑

k=0

(
n

k

)
(x)n↑(y)n↑

Da cui risulta immediatamente chiaro il parallelismo con i polinomi di potenze.
Un’idea di ricerca, quindi, può essere tentare di sostituire i pesi della formula di
Ewens γ

(n)
k con un polinomio p(θ) = ∑n

k=1 α
(n)
k θk, ottenendo qualcosa del tipo

γ
(n)
k = α

(n)
k θk

p(θ)

La sfida è costruire p(θ) in modo da riottenere la ricorsività del teorema 2.4.1.

Un’applicazione recente e curiosa del processo di Dirichlet e della formula
di Ewens è alla linguistica. La recente esplosione del numero di elaborati scritti
prodotti tramite le nuove tecnologie (email, social network) ha fornito, infatti,
numerosi dati da studiare [19]. In particolare risulta interessante analizzare la
frequenza delle parole in un testo: il parallelismo con la formula di Ewens è
immediato. Empiricamente si era notato che le parole si distribuivano in base
alla loro frequenza lungo una curva ∼ 1/kα. Tuttavia studi più recenti hanno
mostrato che l’andamento segue un regime differente per le parole più frequenti
che decade molto meno rapidamente e corrisponde alla distribuzione del pro-
cesso di Dirichlet (come se il parametro α fosse infinto). L’obiettivo attuale di
ricerca è quello di trovare un unico modello che descriva entrambi questi regimi
e di costruirlo come la formula di Ewens. Un modello di questo tipo potrebbe
avere applicazioni molto interessanti come lo studio della varietà di una lin-
gua (intesa come il numero di parole) a partire dagli elaborati posseduti: ad
esempio, si potrebbe applicare all’analisi delle lingue morte o delle lingue del
passato di cui non conosciamo l’uso corrente ma di cui possediamo campioni di
osservazioni dati dai testi giunti fino a noi.

Inoltre esiste un parallelismo molto attuale tra questo studio linguistico e
uno studio ecologico della biodiversità delle popolazioni, tema che abbiamo già
trattato nell’elaborato. Come mostrato in [19], infatti, la frequenza delle specie
animali in un ecosistema segue la stessa distribuzione delle parole in un testo,
quindi la formula di Ewens potrebbe intervenire nella definizione di indici di
biodiversità. Il tema è particolarmente attuale dal momento che la conservazio-
ne della biodiversità è un argomento dell’agenda 2030 dell’ONU, un documento
redatto nel 2015 per indicare i traguardi da perseguire per uno sviluppo soste-
nibile. Ad esempio, nell’obiettivo 15.5 si legge "intraprendere azioni efficaci ed
immediate per ridurre il degrado degli ambienti naturali, arrestare la distruzione
della biodiversità"[2] e la parola biodiversità appare ben 8 volte nell’agenda, a
sottolineare che si tratta di un problema attuale e che sarà centrale ancora nei
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prossimi anni. La definizione di strumenti statistici per la misurazione della
varietà delle specie viventi, che permettano di identificare i trend e suggerire gli
interventi possibili è, quindi, una questione che si continuerà ad affrontare an-
che nei prossimi anni e la formula di Ewens può giocare un ruolo fondamentale
in questa sfida.
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Appendice A

Numeri di Stirling

I numeri di Stirling di prima specie [3] sono i coefficienti dell’espansione dei
fattoriali in potenze. Essi trovano varie applicazioni in probabilità e combina-
toria: ad esempio, nella nostra trattazione abbiamo usato i numeri di Stirling
di prima specie in merito al loro legame con i simboli di fattoriali crescenti e
decrescenti (x)n↑ e (x)n↓.

Possiamo dare una definizione ricorsiva dei numeri di Stirling, come segue:

Definizione A.0.1 (Numeri di Stirling di prima specie senza segno). Dato
n ∈ N e k ∈ N, diamo la seguente definizione ricorsiva di |s(n, k)|:


|s(0, 0)| = 1
|s(n, 0)| = 0, n > 0
|s(n, k)| = 0, k > n

|s(n + 1, k)| = |s(n, k − 1)| + n|s(n, k)|, n = 1, 2, . . . , n + 1, n = 0, 1, . . .

Definizione A.0.2 (Numeri di Stirling di prima specie). Dato n ∈ N e k ∈ N,
diamo la seguente definizione ricorsiva di s(n, k):


s(0, 0) = 1
s(n, 0) = 0, n > 0
s(n, k) = 0, k > n

s(n + 1, k) = s(n, k − 1) − ns(n, k), n = 1, 2, . . . , n + 1, n = 0, 1, . . .

Il legame fondamentale tra i fattoriali e i numeri di Stirling di prima specie
sta nelle seguenti relazioni:

Proposizione A.0.1.

(x)n↓ =
n∑

k=1
s(n, k)xn

(x)n↑ =
n∑

k=1
|s(n, k)|xn
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Dove |s(n, k)| sono i numeri di Stirling senza segno.

Una proprietà fondamentale che abbiamo usato nella tesi è la seguente:

Teorema A.0.1. Dato n ∈ N, k ∈ N vale la seguente uguaglianza:

|s(n, k)| = n!
k!

∑
r1,...,rk∈{1,...,n}:

r1+···+rk=n

1
r1 . . . rk

Facciamo attenzione che nella somma le k-uple sono prese ordinate, quindi
sommiamo più volte su ogni k-upla ottenuta permutando l’ordine degli addendi.
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Appendice B

Numeri di Bell

I numeri di Bell [10] contano le possibili partizioni di un insieme finito. In
particolare li possiamo definire nel seguente modo:

Definizione B.0.1 (Numeri di Bell). Fissato n ∈ N, chiamiamo n-esimo
numero di Bell Bn il numero di partizioni di un insieme di n elementi.

I numeri di Bell si definiscono ricorsivamente nel seguente modo:

{
B0 = 1
Bn+1 = ∑n

k=0
(n

k

)
Bk

Notiamo subito che i numeri di Bell crescono molto rapidamente dal mo-
mento che per ricavare il numero n-esimo si sommano tutti i numeri precedenti
opportunamente pesati. Infatti, ad esempio, i primi numeri di Bell sono:

B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877, . . .

I numeri di Bell trovano, poi, diverse applicazioni: contano, ad esempio,
il numero di diverse fattorizzazioni di un numero. Una delle applicazioni più
interessanti consiste nel fatto che il numero di Bell n-esimo Bn conta i possibili
schemi rimici di un componimento di n righe.
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Appendice C

Implementazione del metodo
Monte Carlo

Nella presente appendice presentiamo alcuni approfondimenti sugli aspetti im-
plementativi della deduzione Monte Carlo della formula di Ewens. Abbiamo
trattato gli aspetti teorici nella sezione 2.5. In particolare, nella seguente ap-
pendice riportiamo i codici utilizzati e spieghiamo brevemente alcune scelte
implementative.

Le implementazioni sono avvenute tutte in Matlab senza l’utilizzo di tool-
box aggiuntivi oltre a quelli già built-in nella sua versione base. Nella scrittura
del codice non ci siamo occupati degli aspetti computazionali e numerici di
efficienza di esecuzione.

Come prima cosa, è stato necessario definire una funzione Stirling che
calcolasse i numeri di Stirling di prima specie senza segno, e abbiamo sfruttato
la loro definizione ricorsiva, come segue:

1 function s= Stirling (n,k)
2 % La funzione prende in inputi i valori di n e k e restituisce il

numero di Stirling di prima specie senza segno corrispondente
|s(n,k)|

3 if n==0 && k==0
4 s = 1;
5 elseif k==0
6 s = 0;
7 elseif k>n
8 s = 0;
9 else

10 s = Stirling (n-1,k -1) +(n -1)* Stirling (n-1,k);
11 end
12 end

Listing C.1: Funzione Stirling

Abbiamo anche definito una funzione risingFactorial che calcolasse ri-
corsivamente il fattoriale ascendente di x(n)↑.

1 function x_rising_n = risingFactorial (x, n)
2 % La funzione prende in input un intero x e un numero naturale n e

restituisce il fattoriale ascendente di n di x
3 if n == 1
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4 x_rising_n = x;
5 else
6 for i=1:n
7 x_rising_n = risingFactorial (x,n -1) *(x+n -1);
8 end
9 end

10 end

Listing C.2: Funzione risingFactorial

Un’altra procedura che abbiamo definito è la funzione m from n che prende
i valori delle cardinalità degli insiemi della partizione n1, . . . , nk ∈ {1, . . . , n}
con n1 + · · ·+nk = n e restituisce i valori m1, . . . , mn in cui mj indica il numero
di insiemi della partizione con j elementi.

1 function mVector = m_from_n ( nVector )
2 % La funzione prende in input i valori n_1 ,... , n_k in un vettore

nVector e resituisce i corrispondenti valori m_1 ,... , m_n in un
vettore mVector

3 n = sum( nVector );
4 mVector = zeros (1,n);
5 for v= nVector
6 for j=1:n
7 if v == j
8 mVector (j) = mVector (j)+1;
9 end

10 end
11 end
12 end

Listing C.3: Funzione m from n

A questo punto, abbiamo definito le tre procedure fondamentali che corri-
spondono ai tre step dell’algoritmo del metodo Monte Carlo.

La prima, chiamata randomNumberOfPartitions, prende in input n e θ
e genera casualmente un numero k ∈ {1, . . . , n} con probabilità data dai va-
lori 2.5. Per la generazione casuale con probabilità assegnata abbiamo usato
solamente la funzione di Matlab rand che genera un numero casuale con pro-
babilità uniforme. Per ottenere le probabilità volute abbiamo ragionato nel
seguente modo: abbiamo diviso il segmento [0, 1] in base alle probabilità γ

(n)
k

e abbiamo generato con rand un numero casuale x nell’intervallo [0, 1]. La
funzione restituisce, poi, il valore k corrispondente al più piccolo tra i valori di∑k

i=1 γ
(n)
i più grandi di x.

1 function k = randomNumberOfPartitions (n,theta)
2 % La funzione prende in input n e theta e restituisce k il numero

di insiemi della partizione con la probabilita ’ voluta
dipendente dal parametro theta

3 x = rand;
4 gammaVector = zeros (1,n);
5 for i=1:n
6 gammaVector (i) = theta^i* Stirling (n,i)/ risingFactorial (

theta ,n);
7 end
8

9 bestGamma = 1;
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10 k = n;
11 for j=1:n
12 if x <= sum( gammaVector (1:j))
13 if sum( gammaVector (1:j)) <= bestGamma
14 bestGamma = sum( gammaVector (1:j));
15 k = j;
16 end
17 end
18 end
19 end

Listing C.4: Funzione randomNumberOfPartition

Lo step successivo consiste nella generazione casuale, fissato k, delle cardi-
nalità n1, . . . , nk degli insiemi della partizione. La generazione degli n1, . . . , nk

avviene secondo le probabilità assegnate in 2.6. Abbiamo, come prima cosa,
definito una funzione createM che genera una matrice M di k colonne, con-
tenente nelle righe tutte le possibili k-uple di n1, . . . , nk che sommano a n.
Successivamente la funzione randomPartitionNumbers assegna la probabilità
a ogni k-upla, assegnandola all’indice di riga corrispondente in M e seleziona
un indice casualmente con la probabilità voluta. Restituisce, quindi, la k-upla
corrispondente. L’uso degli indici nella scelta randomica ha permesso, quindi,
di evitare la complicazione che si poteva avere dal fatto che la scelta casuale
avvenisse in Rk.

1 function M= createM (n, k)
2 % La funzione prende in input n e k e restituisce una matrice le

cui righe sono tutte le possibili k-uple in {1 ,... ,n} che
sommano a n

3 B = [];
4 u = ones (1,k);
5 M = [];
6 if k==n
7 for j=1:k
8 M = u;
9 end

10 else
11 index = k;
12 saved_u = zeros (1,k);
13 while not(all( saved_u ==u))
14 saved_u = u;
15 u = create_v (saved_u ,n,index);
16 B = [B; u];
17 end
18

19 [r, ~] = size(B);
20 for i=1:r
21 if sum(B(i ,:))==n
22 M = [M; B(i ,:) ];
23 end
24 end
25 end
26 end

Listing C.5: Funzione createM
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1 function nVector = randomPartitionNumbers (n,k)
2 % La funzione prende in input n e k naturali con k<=n e

restituisce un vettore nVector con una k-upla di numeri in
{1 ,... ,n} che sommano a n con probabilita ’ voluta

3 M = createM (n,k);
4 [g, ~] = size(M);
5 gammaVector = zeros (1, g);
6 for i=1:g
7 prod_n = prod(M(i ,:));
8 mVector = m_from_n (M(i ,:));
9 prod_m = prod( factorial ( mVector ));

10 gammaVector (i) = factorial (n)/( Stirling (n,k)* prod_n * prod_m
);

11 end
12

13 x = rand;
14

15 index = k;
16 [~, h] = size( gammaVector );
17 bestGamma = Inf;
18 for j=1:h
19 if x <= sum( gammaVector (1:j))
20 if sum( gammaVector (1:j)) <= bestGamma
21 bestGamma = sum( gammaVector (1:j));
22 index = j;
23 end
24 end
25 end
26

27 nVector = M(index ,:);
28 end

Listing C.6: Funzione randomPartitionNumbers

Infine, abbiamo definito la procedura randomPart per il terzo step dell’algo-
ritmo che, dati n1, . . . , nk, genera con probabilità uniforme una partizione i cui
insiemi hanno cardinalità n1, . . . , nk. Per farlo abbiamo sfruttato la funzione
partitions definita in [12] che, dati, n e k genera tutte le possibili partizioni di
{1, . . . , n} aventi k elementi. La struttura dati usata per contenere le partizioni
è quella delle celle. Ogni partizione corrisponde a una cella 1 × k i cui ele-
menti sono i vettori corrispondenti agli insiemi di ogni partizione. La funzione
randomPart prende la cella con tutte le possibili partizioni di {1, . . . , n} aventi
k elementi, elimina tutte le partizioni i cui insiemi non hanno cardinalità asse-
gnata n1, . . . , nk e restituisce una partizione di quelle restanti con probabilità
uniforme tramite la funzione randi.

1 function partition = randomPart ( nVector )
2 % La funzione prende in input un vettore nVector contenente una k-

upla n_1 ,... , n_k e restituisce una partizione di {1 ,... ,n} i
cui elementi hanno cardinalita ’ n_1 ,... , n_k scelta con
probabilita ’ uniforme

3 n = sum( nVector );
4 [~, k] = size( nVector );
5 totalPartitions = partitions (n,k);
6 [numPart , ~] = size( totalPartitions );
7 correctPartition = [];
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8 for i=1: numPart
9 nVector_handling = nVector ;

10 c = 0;
11 singlePartition = totalPartitions {i};
12 [~, dimSinglePart ] = size( singlePartition );
13 for j=1: dimSinglePart
14 set = singlePartition {j};
15 [~, dimSet ] = size(set);
16 d = 0;
17 [~, dimNVector_handling ] = size( nVector_handling );
18 for t=1: dimNVector_handling
19 if nVector_handling (t) == dimSet
20 index=t;
21 d = d+1;
22 end
23 end
24 if d~=0
25 c = c+1;
26 nVector_handling = nVector_handling ([1: index -1,

index +1: end ]);
27 end
28 end
29 if c== dimSinglePart
30 correctPartition {end +1} = singlePartition ;
31 end
32 end
33 [~, correctDim ] = size( correctPartition );
34 x = randi ([1, correctDim ]);
35 partition = correctPartition (1, x);
36 end

Listing C.7: Funzione randomPart

Per ricavare la stima teorica abbiamo, poi, definito una funzione Ewens che
prende in input θ e gli n1, . . . , nk e implementa la formula di Ewens.

1 function p=Ewens(nVector , theta)
2 % La funzione prende in input un vettore nVector con valori n_1

,... , n_k e un parametro theta e restituisce il valore della
formula di Ewens per n_1 ,... , n_k con parametro theta

3 [~,k]= size( nVector );
4 n = sum( nVector );
5 p = theta^k/ risingFactorial (theta ,n) * prod( factorial (nVector

-1));
6 end

Listing C.8: Funzione Ewens

Infine, abbiamo definito una funzione Esperimenti che, presi n, il pa-
rametro di probabilità θ e il numero di esperimenti it restituisce una cella
partitionCollection con tutte le partizioni ottenute, un vettore partitionCount
con le frequenze relative di apparizione corrispondenti e un altro vettore EwensResults
che restituisce il valore teorico di probabilità per ogni partizione.

1 function [ partitionCollection , partitionCount , EwensResults ]=
Esperimenti (n, theta , it)

2 % La funzione prende in input n, theta e it ed effettua it
simulazioni di generazione di partizioni con parametri n e
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theta. Restituisce una cella 1xit con le partizioni ottenute ,
un vettore con le frequenze relative corrispondente , e un
altro vettore con le stime teoriche corrispondenti

3 partitionCollection = [];
4 partitionCount = [];
5 EwensResults = [];
6 for i=1: it
7 k = randomNumberOfPartitions (n,theta);
8 nVector = randomPartitionNumbers (n,k);
9 partition = randomPart ( nVector );

10 partition = partition {1};
11

12 count = 0;
13 [~, dimPartColl ] = size( partitionCollection );
14 for j=1: dimPartColl
15 if isequal ( partitionCollection {j}, partition )
16 count = count +1;
17 partitionCount (j) = partitionCount (j)+1;
18 end
19 end
20 if count ==0
21 partitionCollection {end +1} = partition ;
22 partitionCount (end +1) = 1;
23 EwensResults (end +1) = Ewens(nVector , theta);
24 end
25 end
26

27 partitionCount = partitionCount ./it;
28 end

Listing C.9: Funzione Esperimenti

Lo script che chiama e plotta l’errore della funzione Esperimenti è, infine,
il seguente:

1 clear
2 close all
3 clc
4

5 it = 10000;
6 theta = 2;
7 n = 5;
8 err_2 = [];
9 [ partitionCollection , partitionCount , EwensResults ]

10 = Esperimenti (n, theta , it);
11 for c =1:100:10000
12 [~, expVec , teoVec ]= Esperimenti (n,theta ,c);
13 err_2 = [err_2 , norm(expVec - teoVec )];
14 end

Listing C.10: Script che chiama e plotta Esperimenti
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