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Black-box Optimization
@00

Introduction

Optimization problem
Given f : S — R,

find x* € argmax f(x)
x€S

Input:x
ﬂ Black-box
NS > "oracle”: > Output: f(x)

S
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Black-box Optimization
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Genetic Algorithms

We consider a pseudo-boolean objective f : {0,1}" — R.
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Black-box Optimization
oeo

Genetic Algorithms

We consider a pseudo-boolean objective f : {0,1}" — R.

Genetic Algorithms

© Mutation: candidate solutions y1,...,yy € {0,1}" are sampled from
a family of distributions (D(-|x(1), ... ,X(k)))x(1)7'..7x(k);

@ recombination of candidate solutions is eventually conducted;

© Selection: the candidate solutions yi, ..., yy are selected based on
their fitness f(y1),..., f(yn);

© back to step 1 until termination criteria (reach of the optimum).
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Black box Optimization J Cc ntu\ butions G onal Results

Randomized Local Search (RLS)

Conclusion

RLS Algorithm

1
2
3
4:
5:
6
7
8
9

: Input: Fitness function f, bit-string length n
. Initialize: Generate a random solution x € {0,1}"
. while termination criteria are not met do

Choose the radius k
Create y < x by flipping k randomly chosen bits in x
if f(y) > f(x) then
X4y
end if

. end while
10:

Output: Best solution x found
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Parameter Control
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Dynamic Algorithm Configuration

Definition
We call policy a function

m:S—[l.n],s — k

where s describes the state of the algorithm at a certain iteration.
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where s describes the state of the algorithm at a certain iteration.

Problem

Find a 7* € argminE [c(7; f)]

where c is a (random) cost metric assessing the cost of using m € I1 on
the problem f.
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Dynamic Algorithm Configuration

Definition
We call policy a function

m:S = [l.n],s— k

where s describes the state of the algorithm at a certain iteration.

Problem

Find a 7* € argminE [c(7; f)]

where c is a (random) cost metric assessing the cost of using m € I1 on
the problem f.

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in

our case.
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LEADINGONES and ONEMAX

Definition
ONEMAX (OM for brevity) function is a function that returns the number
of one-bits in its argument, that is,

ONEMAX(x) = Z X
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LEADINGONES and ONEMAX

Definition
ONEMAX (OM for brevity) function is a function that returns the number
of one-bits in its argument, that is,

ONEMAX(x) = OM(x) = Zx,-.

Definition

LEADINGONES (LO for brevity) returns the size of the longest prefix
consisting only of one-bits in its arguments. More formally, for any bit
string x € {0,1}"” we have

[y

LEADINGONES(x) = LO(x) = > [
=5
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Unary Unbiased Complexity

Definition

A unary unbiased distribution (D(:|x(}))) ) is a family of probability
distributions over {0, 1}" such that for all inputs x(!) € {0,1}" the
following two conditions hold.

(i) Yy,z € {0,1}": D(y|x(V) = D(y @ z|xV) @ 2),

(i) ¥x € {0,1}" Vo € S, : D(y|xW) = D(a(y)|o(xM))
A genetic algorithm that creates an offspring by sampling from a unary
unbiased distribution is called a unary unbiased algorithm.
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Unary Unbiased Complexity

Definition
A unary unbiased distribution (D(:|x(}))) ) is a family of probability
distributions over {0, 1}" such that for all inputs x(!) € {0,1}" the
following two conditions hold.

(i) Yy,z € {0,1}": D(y|x(V) = D(y @ z|xV) @ 2),

(i) ¥x € {0,1}" Vo € S, : D(y|xV) = D(a(y)|o(xM))
A genetic algorithm that creates an offspring by sampling from a unary
unbiased distribution is called a unary unbiased algorithm.

Definition
Defined A the set of unary unbiased algorithms, we define the unary
unbiased black-box complexity of the problem of optimizing f : S — R
as
E[T(A,f)]:= inf E[T(A,f)]
AcA

0
R




Parameter Control
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Complexity Results

The unary unbiased black-box complexity of ONEMAX is ©(nlog n).
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Complexity Results

The unary unbiased black-box complexity of ONEMAX is ©(nlog n).

The unary unbiased black-box complexity of LEADINGONES is ©(n?).
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Parameter Control
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Dynamic Radius Policy for LEADINGONES

States are defined as values of LEADINGONES fitness.

The state-of-the-art dynamic parameter policy for RLS radius on
LEADINGONES is defined as a function 7 : S1) := [0..n] — [0..n].

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness / is

_ _k(n—1-1)-----(n—1—-k+1)
qlki f,n) = n(n—1) - (n—k+1)
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Dynamic Radius Policy for LEADINGONES

States are defined as values of LEADINGONES fitness.

The state-of-the-art dynamic parameter policy for RLS radius on
LEADINGONES is defined as a function 7 : S1) := [0..n] — [0..n].

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness / is

Q(k;/,n):k(n_l_l) """ (n—1—k+1)

q(k;1,n) < q(k+1;/,n)if and only if | < (n—k)/(k+1)

10/24



Parameter Control
0000000

Dynamic Radius Policy for LEADINGONES

The optimal policy for the RLS radius is

=ity

bits when the current fitness is i. This results in an expected runtime of
0.39n2, which corresponds to a 22% improvement of the choice of fixed
parameters.
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DAC on LEADINGONES

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LEADINGONES. J
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DAC on LEADINGONES

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LEADINGONES. J
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DAC on LEADINGONES

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LEADINGONES.
power_of 2 with n=50 and k=5
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DAC on LEADINGONES

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LEADINGONES.
power_of 2 with n=50 and k=5
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Problem

Generalization difficulties for growing n.
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Setting

Extend the radius policies for RLS including more information. \
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State Spaces

o SM =[0..n], values of LEADINGONES fitness;
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Contributions
©00

Setting

Extend the radius policies for RLS including more information.

State Spaces

o S() — [0..n], values of LEADINGONES fitness;

o 8@ :={(I,m): I €[0..n], m € [I..n]}, tuples of (LEADINGONES,
ONEMAX) fitness;

o S(M = {0,1}", all possible bit-strings.

Lexicographic selection

Candidate y is accepted from x according to the relation
(LO(y),OM(y)) > (LO(x), OM(x)) if and only if (LO(y) > LO(x)) or
(LO(y) = LO(x) and OM(y) > OM(x)).

13/24



Contributions
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Policy on S®)

Expected Runtime from a Starting State

E[TS (1, m)] = 1+ B((1, m)|(1, m)) - E[TSx (1, m)]+
n—1 n—1

+ Z ZP(()\,,U,)K/, m)) 'E[Topf()‘ﬂ :U')]? V(/, m) € 8(2)
) Zm"

kopt(n —1,n—1) =1
E[Topt(n—1,n—1)] =n+1
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Policy on S®)

Expected Runtime from a Starting State

[Té,’;t(/ m)] = 1+P((/ m)|(1,m)) - E[TS$0(1, m)]+

+ Z ZP((A,M)I(/,m))'E[Topr()\,u)ly v(l,m) € @

A=/ =\
Oy (m) "

kopt(n —1,n—1) =1
E[Topt(n—1,n—1)] =n+1

Optimal Policy

kopt (I, m) = argmin E| Opt(l m)], Y(I,m)eS?
ke[n—1]

14/24
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Strict Standard Setting

Approximation: Strict Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

Expected Runtime from a Starting State
E[TN(1, m)] =1 + B((/, m)|(/ m)) E[TN(1, m)]+

+ Z ZP (A m)I(1m)) - E[Tope(A, )]
dtm) "
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Contributions
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Strict Standard Setting

Approximation: Strict Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

Expected Runtime from a Starting State

E[TS(1, m)] =1 + P((/, m)|(/ m)) E[TS, m)]+

+ Z Z]P) )\ /L / m E[Topt()‘v:u)]

(A u)sﬁ(/ m"
Expected Runtime of the Algorithm
n—1n—1
E[Tope]l = > > PLOKXD) =1,0M(x?) = m) - E[Tope(/, m)]
1=0 m=]
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Computational Results
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Lexicographic Low-dimensional

Values of k- n = 15 Values of k- n = 16
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Figure: Heatmaps of optimal policies for lexicographic selection
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Computational Results
0®00000

Lexicographic Low-dimensional

n SO std. S Jex. S@) lex.
7 19.11 14.20 11.55
8 24.96 18.75 14.37
9 31.59 22.03 17.25
10 39.00 27.23 20.29
11 47.19 30.34 23.39
12 56.16 37.16 26.63
13 65.91 40.31 29.91
14 76.44 46.76 33.28
15 87.75 50.94 36.75
16 99.84 61.91 40.24

Table: Expected time for lexicographic selection
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Computational Results
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Strict Standard Low-dimensional

Values of k- n = 16

Values of k- n = 15
16

Leadingones fitness.
LeadingOnes fitness.
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OneMax fitness.
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Computational Results
000000

Strict Standard Low-dimensional

n S std. S@ s, std. Improvement
7 19.110 14.783 22.61%
8 24.960 19.629 21.41%
9 31.590 25.530 19.20%
10 39.000 31.737 18.61%
11 47.190 38.575 18.24%
12 56.160 46.423 17.31%
13 65.910 55.265 16.15%
14 76.440 64.194 16.00%
15 87.750 74.006 15.66%
16 99.840 84.919 14.96%

Table: Expected time for strict standard selection
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Heuristic Policy

LeadingOnes fitness

Values of k - n = 16
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Computational Results
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Values of k-n = 30
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Lexicographic High-dimensional

Computational Results
0000080

n s Heuristic on S(@
20 83.052 £ 35.401 56.817 + 24.935
30 156.440 4+ 57.204 97.100 £ 38.187
50 365.279 + 113.261 189.796 £ 70.485
70 686.021 + 201.404 322.379 + 107.782
99 1484.031 + 357.983 616.595 + 161.838

Table: Simulated results for lexicographic selection
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Standard High-dimensional

Computational Results
000000@

n s Heuristic on S(@
20 159.806 + 63.532 151.438 + 61.158
30 344.132 4+ 114.888 347.866 + 102.573
50 970.620 + 254.967 960.984 + 234.036
70 1886.518 + 405.619 1866.500 + 416.876

Table: Simulated results for standard selection
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Future Directions

Future Directions

@ Study more in depth the standard setting, trying to validate the
results in high dimension.

23 /24



Conclusion
®0

Future Directions

Future Directions

@ Study more in depth the standard setting, trying to validate the
results in high dimension.

@ Use the tested settings and policies to train a RL agent in the
proposed settings, using our policies as new ground truths.

23/24



Conclusion
®0

Future Directions

Future Directions

@ Study more in depth the standard setting, trying to validate the
results in high dimension.

@ Use the tested settings and policies to train a RL agent in the
proposed settings, using our policies as new ground truths.

@ Our research contributes to the growing field of AutoML, where
optimization heuristics for parameter control are explored as a means
to automate the fine-tuning of machine learning algorithms.

23/24



Conclusion
oe

Thank you for your attention!
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Further Results
©0000000000

Standard Setting

Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

We obtain a linear system in matrix form Ax = b as follows.

X =

E[TS(1,1)]
E[Tg,ffgl)(/ I +1)]

BT (1,0 — 1)

opt

(1 —P,((1,1) | (1,1)))
PRI((1,1) | (1,1 + 1))

BN 1) | (10— 1)

1+Z,\ 11
1+>202 /+1Z

1+ 350 Y

PRe)((1, 1+ 1) [ (1,1))

(1= PR (11 +1) | (1, 1+1))) - .

Pl (1,1 + :1) | (I,n—1))

PO @)I(1 1)E[ Tope(A, )]
AP I T+ 1))E[Tope (A, )]

LB(O 21 (1 1~ D)E[Tope 0]

]P’(k"fl)((l’ n— 1) | (l7 /))
]P(kn*l)((lly n— 1) I (/, |+ 1))

: (1 —Pl2)((1, n:* D (n=1))]
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Further Results
0@000000000

Standard Setting

We obtain linear system in matrix form Ax = b as follows.

E[Té,f?(/ ) L+ 3 I e L\ 1)[(1 1) E[ Tope (A, )]
EITop (4] 14 20 S Bl 4 )L Tope(h, 1)

BT ”(/,n 1)] L+ Y0t S LB )| (11— 1))E] Tope( )]
(=PRI [(10) P11+ 1) [ (1) Plo-0((1,n = 1) | (1,1))

_ PR [ (1 1+1)) (1 =PRad((114+1) | (L 1+1))) - Pre-1)((1,n — 1) | (1,1 +1))
BN (1) PS4 1) | (hn-1)) o (1 B0 - 1) | (- 1)

Approximation

o We take kj = kjy1 = -+ = kn—1 = k to compute E| opt(l, m)];

@ We then take kopt(/, m) = argmmke[n_,]E[Topt(l, m)].

2/31
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Standard Low-dimensional

Figure: Heatmaps of approximated optimal policies for standard selection
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Further Results
000@0000000

Standard Low-dimensional

Dim (n) SW std S® std
2 15 1.125
3 3.5 2.375
4 6.0 4.448
5 9.667 7.463
6 13.667 11.488
7 18.875 16.435

Table: Expected time for standard selection
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Graph n =4
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Further Results
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Boxplot lexicographic

Boxplt of Eualuations or LeadingOnas probiem (n=99, runs=500)
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Further Results
00000080000

Limited Portfolio

e powers_of two: {2/ |2/ < n};
e initial _segment with 3 elements: [1..3];
e evenly_spread with 3 elements: {i-|n/3| +1|i € [0..2]}.

n s s@ powers_of_two initial segment evenly _spread
2 1.5 1.25 1.25 1.25 1.75
3 3.125 2.375 2.75 2.375 2.375
4 55 4.375 4.625 4.687 4.687
5 7.857 6.491 6.87 7.087 7.087
6 11.511 8.946 9.537 9.684 9.261
7 14.197 11.549 12.205 12.471 12.037
8 18.748 14.368 14.574 15.306 14.906
9 22.031 17.248 17.589 18.318 17.693
10 27.234 20.289 20.683 21.413 20.81
11 30.337 23.393 23.908 24.6 24.028
12 37.156 26.63 27.203 27.903 27.1
13 40.306 29.914 30.58 31.247 30.482
14 46.758 33.282 34.024 34.694 33.938
15 50.941 36.747 37.53 38.214 37.329
16 58.558 40.237 40.469 41.772 40.9
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Limited portfolio

Figure: Heatmaps of optimal policy for lexicographic selection and limited
portfolio
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Further Results
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Results for S(7)

n S@) S(n)

7 11.549 11.549
8 14.368 14.365
9 17.248 17.248
10 20.289 20.287
11 23.393 23.393
12 26.63 26.629
13 29.914 29.914
14 33.282 33.279
15 36.747 36.743
16 40.237 40.236

Table: Expected time for lexicographic selection
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Results for S(

Values of K; n = 8

Values of K; n = 15
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Runs
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25 50 75 100 125
OneMax

120

100

80

60

40

20

LeadingOnes

= =
N U1 4 O N
u O vt o wu

o
o

50 100
OneMax

125

100

75

50

25

11/31



Related Work
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Dynamic Algorithm Configuration

Definition (DAC Problem)
Given (A,©,D, N, c):
@ A step-wise reconfigurable target algorithm A with configuration
space O.
@ A distribution D over target problem instances with domain /.

@ A space of dynamic configuration policies 7 € [Twith 7: S x | — ©
that choose a configuration 6 € © for each instance / € / and state
se S of A

@ A cost metric ¢ : 1 x | — R assessing the cost of using 7w € I on
i€l
Find a 7* € arg minzen Eiwp [c(m, i)].
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Dynamic Algorithm Configuration

Definition (DAC Problem)
Given (A,©,D, N, c):
@ A step-wise reconfigurable target algorithm A with configuration
space ©.

@ A distribution D over target problem instances with domain /.

@ A space of dynamic configuration policies 7 € [Twith 7: S x | — ©
that choose a configuration 6 € © for each instance / € / and state
se S of A
@ A cost metric ¢ : 1 x | — R assessing the cost of using 7w € I on
i€l
Find a 7* € arg minzen Eiwp [c(m, i)].

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case. 12/31
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DAC on LEADINGONES

Definition

Q-learning consists in learning the Q-function @ : S x A — R, which
maps a state-action pair to the cumulative function reward that is received
after playing an action a in state s.
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DAC on LEADINGONES

Definition

Q-learning consists in learning the Q-function @ : S x A — R, which
maps a state-action pair to the cumulative function reward that is received
after playing an action a in state s.

Definition

To model the O-function it is possible to use two copies of a neural
network, one used to select maximizing actions and the other to predict
the value, in order to improve stability. The result is the so-called double
deep O network.

13/31
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DAC on LEADINGONES

Given a state s; and an action a;, the Q-value Q(s;, a;) can be updated
using temporal differences (TD) as

Q(st, at) «+ Q(st, ar) + a(re + v max Q(se41,+)) — Q(st, at))

where « is the learning rate and ~ is the discount factor.
The reward is r; = LO(x;) — LO(x¢—1) — 1
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DAC on LEADINGONES

Given a state s; and an action a;, the Q-value Q(s;, a;) can be updated
using temporal differences (TD) as

Q(st, at) «+ Q(st, ar) + a(re + v max Q(se41,+)) — Q(st, at))

where « is the learning rate and ~ is the discount factor.
The reward is r; = LO(x¢) — LO(x¢—1) — 1

The reward-maximizing policy can then be defined as
m(s) = argmax Q(s, -)
acA

Typically, for better exploration, e-greedy approach is used, where € gives
the probability that an action a; is replaced with a randomly sampled one.
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DDQN DAC agent on LEADINGONES

s . = n=150
o8 50 m— n=200
s -»- 100 B
. ge
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goa B4l n.
£ 3*
Zo02
Y 2
01 .
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K k

Figure: Hitting ratio and number of hitting points for the DDQN agent in various

dimensions
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Parameter Control: Exact Runtime for (1+1) Algorithms

General Analysis: Applicable to all (1+1) algorithms on LEADINGONES, RLS in
particular.

Theorem (Exact Runtime for LEADINGONES)

Let T be the time until the optimum is found. Then:

n—1
T ~ ZX,- - Geom(gq;)
i=0
where:
@ Xo,...,X,_1 are i.i.d. binary random variables.

@ gq;: Probability that mutation improves fitness i.

1921 1
Expected Time: E[T] = 5 > e with o= if g =0.
=0 ' i
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Parameter Control: Proof Sketch (Part 1)

Setup:

@ Assume uniform distribution of ones in the tail:
xj ~ Uniform{0,1}, Vj e [i+2.n]

@ Define runtimes:

o T?: Runtime starting with fitness exactly /.
o T72d: Runtime starting with fitness at least i (with x;1 random).

@ Note: T? = Trand,

Key Observation:
T? = Geom(q;) + T3, Vi<n

1

@ Waiting time to flip bit / + 1 follows Geom(g;).

17/31



Related Work
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Parameter Control: Proof Sketch (Part 2)

Recursive Relation:

T = X TP+ (1 - X)) Tiye
= Xj(Geom(q;) + T/24%) + (1 — X)) T3¢
= X;Geom(q;) + T3’
where:
@ X; is a uniform binary random variable, independent from other randomness.
By Induction:
@ Starting from T2 and iterating backwards.
@ Since T = T§", the theorem holds.

Conclusion:

@ The runtime is a sum of independent geometric distributions, scaled by
random binary variables.

@ Provides a clean, exact expression for E[T].

18/31



Standard Setting

Standard Selection
Candidate y is accepted from x according to the relation LO(y) > LO(x).

Other Methods
00000

We obtain a linear system in matrix form Ax = b as follows.

X =

E[TS(1,1)]
E[Tg,ffgl)(/ I +1)]

BT (1,0 — 1)

opt

(1 —P,((1,1) | (1,1)))
PRI((1,1) | (1,1 + 1))

BN 1) | (10— 1)

1+Z,\ 11
1+>202 /+1Z

1+ 350 Y

PRe)((1, 1+ 1) [ (1,1))

(1= PR (11 +1) | (1, 1+1))) - .

Pl (1,1 + :1) | (I,n—1))

PO @)I(1 1)E[ Tope(A, )]
AP I T+ 1))E[Tope (A, )]

LB(O 21 (1 1~ D)E[Tope 0]

]P’(k"fl)((l’ n— 1) | (l7 /))
]P(kn*l)((lly n— 1) I (/, |+ 1))

: (1 —Pl2)((1, n:* D (n=1))]
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Standard Setting

We obtain linear system in matrix form Ax = b as follows.

E[Té,f?(/ ) L+ 3 I e L\ 1)[(1 1) E[ Tope (A, )]
EITop (4] 14 20 S Bl 4 )L Tope(h, 1)

BT ”(/,n 1)] L+ Y0t S LB )| (11— 1))E] Tope( )]
(=PRI [(10) P11+ 1) [ (1) Plo-0((1,n = 1) | (1,1))

_ PR [ (1 1+1)) (1 =PRad((114+1) | (L 1+1))) - Pre-1)((1,n — 1) | (1,1 +1))
BN (1) PS4 1) | (hn-1)) o (1 B0 - 1) | (- 1)

Approximation

o We take kj = kjy1 = -+ = kn—1 = k to compute E| opt(l, m)];
o We then take kopt(/, m) = argminc[,_ - E[TO (I m)].
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Probabilistic Method: Algorithm

Algorithm Steps:

@ Choose k from distribution (po, p1,- - ., Pn), Where Pr[k = i] = p;.
@ Flip k bits chosen uniformly at random.

Fitness Level n — 1:
@ Only one valid string: 1"10.
@ To improve, flip exactly one bit = p; = 1.
@ Success probability: 1 = E[T] = n.
Fitness Level n — 2:
@ Two states: S; = 177201 and S, = 1"7200.

@ Use p; + p» = 1 in both states.
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Probabilistic Method: Expected Time Analysis

Define:

@ E[T1] and E[T5,]: Expected times from states S; and S;.

System of Equations:

E[Ti]=1+ ”1 E[T] + 2”2 -+ (1 — 2"—1 E[T1]
E[To] =1+ p? + Pl E[T1] + (1 - ) E[T»]

Simplified:

(2= 0(1))E[T1] — E[T2] = (1+0(1))p§1>
—E[Ta]+ (2= o(1))E[T2] = (1 + p{?) -5

P
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Probabilistic Method: Optimization and Conclusion

Optimization:

@ Multiply and add the equations for E[T1] and E[T5] to solve.

@ Result:
3—o()E[T1]=(2% o(l))ﬁ + ﬁ +n
3—o())E[T]=(1+ o(l))ﬁ +(2-0(1)) <p?2) + n>
1 1
Conclusion:
@ Asymptotic minimization occurs when pgl) = pgz) =1.

@ Optimal Strategy: Always flip one bit in both states.
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Black-box complexity

OneMax unary unbiased complexity
The lower bound Q(nlog n) is consequence of the Theorem

Theorem (Theorem 6 in Lehre, Witt, 2010)

Let f: {0,1}" — R be a function that has a single global optimum (i.e.,
in the case of maximization, the size of the set arg max f is one). The
unary unbiased black-box complexity of f is Q(nlog n).

The theorem is proved by multiplicative drift analysis, with potential
defined as the smallest Hamming distance among the previously queried of
any of the previously queried search points to the unique global optimum
or its bit-wise complement.
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Multiplicative Drift Analysis

Theorem (Multiplicative Drift Theorem)

Let (X¢)t>0 be a sequence of non-negative random variables with a finite
state space S C Rx>q such that 0 € S. Let smin := min(S \ {0}), let
T:=inf{t>0| X, =0}, and fort >0 ands €S, let

A¢(s) ;== E[X; — Xe1 | Xt = s]. Suppose that there exists 6 > 0 such
that for all s € S\ {0} and all t > 0, the drift is

A¢(s) > ds.
Then

g7 < 1.+ EOE0G/ )]
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Black-box complexity

LeadingOnes unary unbiased complexity

The result is proved via additive drift analysis with the potential function

defined as a function that maps the state of the search process at time t

(i.e., the sequence {x(1), f(x(1)),...,x(t),f(x(t))} of the pairs of search
points evaluated so far and their respective function values) to the largest
number of initial ones and initial zeros in any of the t + 1 strings

x(1),...,x(n).
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Additive drift

Theorem (Additive Drift Theorem)

Let (X:)t=01,2,... be a sequence of non-negative random variables with a finite

g0

state space S g Rzo such that 0 € S. Let T :=inf{t > 0|X; = 0}.
@ If there exists § > 0 such that for all s € S\ {0} and for all t > 0,

At(s) = E[Xt — Xt+1|Xt = S] Z (5,

then EIX
E[T] < ElXo]
)
@ [f there exists 6 > 0 such that for all s € S\ {0} and for all t > 0,
At(s) = ]E[Xt — Xt+1|Xt = S] S (S,

then
E[T] > E[XO]
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Black-box complexity

Definition
For all n € N and all z € {0,1}", let

OM, : {0,1}" — [n], x— OM,(x)=|{i €[n] | xi =z},

be the function that assigns to each length-n bit string x the number of
bits in which x and z agree. Being the unique optimum of OM,, the
string z is called its target string.

We refer to ONEMAX,,, or simply ONEMAX := {OM, | z € {0,1}"} as
the set of all (generalized) ONEMAX functions.

The unrestricted black-box complexity for ONEMAX,, is ©(n/ log n).
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Black-box complexity

For all n € N and z € {0,1}", let

LO,:{0,1}" — [n], xw+ max{i € [0..n] | V) € [i] : x; = z},

be the length of the maximal joint prefix of x and z. Let
LEADINGONES), := {LO, | z € {0,1}"}.
For z € {0,1}" and o € S, permutation of n elements, let

Oz6:{0,1}" = [n], x> max{i € [0..n] | V) € [i] : X5(j) = Zo(j)}

be the maximal joint prefix of x and z with respect to o. The set
LEADINGONES,, is the collection of all such functions; i.e.,

LEADINGONES,, := {LO,, | z€ {0,1}",0 € S,}.

The unrestricted black-box complexity for LEADINGONES,, is 20/31
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CMA-ES (Part 1)

General Structure of CMA-ES

@ Set parameters A\, w; for i =1,..., 4, ¢, dy, Cc, €1, and c,.
@ Initialize:

e Evolution paths: p, =0, p. =0
o Covariance matrix: C =/
o Generation counter: g =0

@ Choose initial distribution mean m € R" and step-size 0 € R+.

While termination criterion not met:
Qg+—g+1 (Increment generation counter)

@ Sample new population:
o Fork=1,... )X\
@ Zy NN(O,I)
e yx = BDz, ~ N(0,C)
o xy =m+ oy ~N(m,a*C)
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CMA-ES (Part 2)

© Selection and Recombination:

o Juw = wyi, where > w; =1and w; >0
e M4+ m+ cphoyy, (Update mean)

© Step-size Control:
o po (1= ¢5)ps + /o (2 = o)t C /29,
o o o0 (& (g 1))

© Covariance Matrix Adaptation:

@ pc +— (1 — cc)pc + Cc(2 - Cc)ﬂeff)?w
° Wl_rank — w; - (1 if w; > 0 else m)

o C+ (1+ch, —ca—c, > wP)C + cappl + ¢, Zf\zl wranky,y.T
Return: m and o as final solution.
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