
Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Parameter Policies for LeadingOnes on
Enhanced State Spaces

Gianluca Covini

Supervisor:
Prof. Stefano Gualandi,
University of Pavia
Co-supervisor:
Prof. Carola Doerr,
Sorbonne Université/CNRS

February 20, 2025
1 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Outline

1 Black-box Optimization

2 Parameter Control

3 Contributions

4 Computational Results

5 Conclusion

2 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Introduction

Optimization problem

Given f : S → R,
find x∗ ∈ argmax

x∈S
f (x)

3 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Genetic Algorithms

We consider a pseudo-boolean objective f : {0, 1}n → R.

Genetic Algorithms

1 Mutation: candidate solutions y1, . . . , yN ∈ {0, 1}n are sampled from
a family of distributions (D(·|x (1), . . . , x (k)))x(1),...,x(k) ;

2 recombination of candidate solutions is eventually conducted;

3 Selection: the candidate solutions y1, . . . , yN are selected based on
their fitness f (y1), . . . , f (yN);

4 back to step 1 until termination criteria (reach of the optimum).

4 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Genetic Algorithms

We consider a pseudo-boolean objective f : {0, 1}n → R.

Genetic Algorithms

1 Mutation: candidate solutions y1, . . . , yN ∈ {0, 1}n are sampled from
a family of distributions (D(·|x (1), . . . , x (k)))x(1),...,x(k) ;

2 recombination of candidate solutions is eventually conducted;

3 Selection: the candidate solutions y1, . . . , yN are selected based on
their fitness f (y1), . . . , f (yN);

4 back to step 1 until termination criteria (reach of the optimum).

4 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Genetic Algorithms

We consider a pseudo-boolean objective f : {0, 1}n → R.

Genetic Algorithms

1 Mutation: candidate solutions y1, . . . , yN ∈ {0, 1}n are sampled from
a family of distributions (D(·|x (1), . . . , x (k)))x(1),...,x(k) ;

2 recombination of candidate solutions is eventually conducted;

3 Selection: the candidate solutions y1, . . . , yN are selected based on
their fitness f (y1), . . . , f (yN);

4 back to step 1 until termination criteria (reach of the optimum).

4 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Genetic Algorithms

We consider a pseudo-boolean objective f : {0, 1}n → R.

Genetic Algorithms

1 Mutation: candidate solutions y1, . . . , yN ∈ {0, 1}n are sampled from
a family of distributions (D(·|x (1), . . . , x (k)))x(1),...,x(k) ;

2 recombination of candidate solutions is eventually conducted;

3 Selection: the candidate solutions y1, . . . , yN are selected based on
their fitness f (y1), . . . , f (yN);

4 back to step 1 until termination criteria (reach of the optimum).

4 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Genetic Algorithms

We consider a pseudo-boolean objective f : {0, 1}n → R.

Genetic Algorithms

1 Mutation: candidate solutions y1, . . . , yN ∈ {0, 1}n are sampled from
a family of distributions (D(·|x (1), . . . , x (k)))x(1),...,x(k) ;

2 recombination of candidate solutions is eventually conducted;

3 Selection: the candidate solutions y1, . . . , yN are selected based on
their fitness f (y1), . . . , f (yN);

4 back to step 1 until termination criteria (reach of the optimum).

4 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Randomized Local Search (RLS)

RLS Algorithm

1: Input: Fitness function f , bit-string length n
2: Initialize: Generate a random solution x ∈ {0, 1}n
3: while termination criteria are not met do
4: Choose the radius k
5: Create y ← x by flipping k randomly chosen bits in x
6: if f (y) ≥ f (x) then
7: x ← y
8: end if
9: end while

10: Output: Best solution x found

5 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Algorithm Configuration

Definition

We call policy a function

π : S → [1..n], s 7→ k

where s describes the state of the algorithm at a certain iteration.

Problem

Find a π∗ ∈ argmin
π

E [c(π; f)]

where c is a (random) cost metric assessing the cost of using π ∈ Π on
the problem f .

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case.

6 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Algorithm Configuration

Definition

We call policy a function

π : S → [1..n], s 7→ k

where s describes the state of the algorithm at a certain iteration.

Problem

Find a π∗ ∈ argmin
π

E [c(π; f)]

where c is a (random) cost metric assessing the cost of using π ∈ Π on
the problem f .

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case.

6 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Algorithm Configuration

Definition

We call policy a function

π : S → [1..n], s 7→ k

where s describes the state of the algorithm at a certain iteration.

Problem

Find a π∗ ∈ argmin
π

E [c(π; f)]

where c is a (random) cost metric assessing the cost of using π ∈ Π on
the problem f .

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case.

6 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

LeadingOnes and OneMax

Definition

OneMax (OM for brevity) function is a function that returns the number
of one-bits in its argument, that is,

OneMax(x) = OM(x) =
n∑

i=1

xi .

Definition

LeadingOnes (LO for brevity) returns the size of the longest prefix
consisting only of one-bits in its arguments. More formally, for any bit
string x ∈ {0, 1}n we have

LeadingOnes(x) = LO(x) =
n∑

i=1

i∏
j=1

xi .

7 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

LeadingOnes and OneMax

Definition

OneMax (OM for brevity) function is a function that returns the number
of one-bits in its argument, that is,

OneMax(x) = OM(x) =
n∑

i=1

xi .

Definition

LeadingOnes (LO for brevity) returns the size of the longest prefix
consisting only of one-bits in its arguments. More formally, for any bit
string x ∈ {0, 1}n we have

LeadingOnes(x) = LO(x) =
n∑

i=1

i∏
j=1

xi .

7 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Unary Unbiased Complexity

Definition

A unary unbiased distribution (D(·|x (1)))x(1) is a family of probability
distributions over {0, 1}n such that for all inputs x (1) ∈ {0, 1}n the
following two conditions hold.

(i) ∀y , z ∈ {0, 1}n : D(y |x (1)) = D(y ⊕ z |x (1) ⊕ z),

(ii) ∀x ∈ {0, 1}n ∀σ ∈ Sn : D(y |x (1)) = D(σ(y)|σ(x (1)))
A genetic algorithm that creates an offspring by sampling from a unary
unbiased distribution is called a unary unbiased algorithm.

Definition

Defined A the set of unary unbiased algorithms, we define the unary
unbiased black-box complexity of the problem of optimizing f : S → R
as

E[T (A, f)] := inf
A∈A

E[T (A, f)]

8 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Unary Unbiased Complexity

Definition

A unary unbiased distribution (D(·|x (1)))x(1) is a family of probability
distributions over {0, 1}n such that for all inputs x (1) ∈ {0, 1}n the
following two conditions hold.

(i) ∀y , z ∈ {0, 1}n : D(y |x (1)) = D(y ⊕ z |x (1) ⊕ z),

(ii) ∀x ∈ {0, 1}n ∀σ ∈ Sn : D(y |x (1)) = D(σ(y)|σ(x (1)))
A genetic algorithm that creates an offspring by sampling from a unary
unbiased distribution is called a unary unbiased algorithm.

Definition

Defined A the set of unary unbiased algorithms, we define the unary
unbiased black-box complexity of the problem of optimizing f : S → R
as

E[T (A, f)] := inf
A∈A

E[T (A, f)]

8 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Complexity Results

Theorem

The unary unbiased black-box complexity of OneMax is Θ(n log n).

Theorem

The unary unbiased black-box complexity of LeadingOnes is Θ(n2).

9 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Complexity Results

Theorem

The unary unbiased black-box complexity of OneMax is Θ(n log n).

Theorem

The unary unbiased black-box complexity of LeadingOnes is Θ(n2).

9 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Radius Policy for LeadingOnes

States are defined as values of LeadingOnes fitness.
The state-of-the-art dynamic parameter policy for RLS radius on
LeadingOnes is defined as a function π : S(1) := [0..n]→ [0..n].

Idea

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness i is

q(k ; l , n) =
k(n − l − 1) · · · · · (n − l − k + 1)

n(n − 1) · · · · · (n − k + 1)

Remark

q(k; l , n) ≤ q(k + 1; l , n) if and only if l ≤ (n − k)/(k + 1)

10 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Radius Policy for LeadingOnes

States are defined as values of LeadingOnes fitness.
The state-of-the-art dynamic parameter policy for RLS radius on
LeadingOnes is defined as a function π : S(1) := [0..n]→ [0..n].

Idea

The probability of obtaining a strictly better solution by flipping k random
bits in a search point of fitness i is

q(k ; l , n) =
k(n − l − 1) · · · · · (n − l − k + 1)

n(n − 1) · · · · · (n − k + 1)

Remark

q(k; l , n) ≤ q(k + 1; l , n) if and only if l ≤ (n − k)/(k + 1)

10 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Dynamic Radius Policy for LeadingOnes

Proposition

The optimal policy for the RLS radius is

k(l ; n) :=

⌊
n

l + 1

⌋
bits when the current fitness is i . This results in an expected runtime of
0.39n2, which corresponds to a 22% improvement of the choice of fixed
parameters.

11 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

DAC on LeadingOnes

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LeadingOnes.

Problem

Generalization difficulties for growing n.

12 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

DAC on LeadingOnes

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LeadingOnes.

Problem

Generalization difficulties for growing n.

12 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

DAC on LeadingOnes

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LeadingOnes.

Problem

Generalization difficulties for growing n.

12 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

DAC on LeadingOnes

A recent approach consists in the use of a DDQN agent to learn the
optimal radius policy for RLS on LeadingOnes.

Problem

Generalization difficulties for growing n.

12 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Setting

Goal

Extend the radius policies for RLS including more information.

State Spaces

S(1) = [0..n], values of LeadingOnes fitness;

S(2) := {(l ,m) : l ∈ [0..n],m ∈ [l ..n]}, tuples of (LeadingOnes,
OneMax) fitness;

S(n) := {0, 1}n, all possible bit-strings.

Lexicographic selection

Candidate y is accepted from x according to the relation
(LO(y),OM(y)) > (LO(x),OM(x)) if and only if (LO(y) > LO(x)) or
(LO(y) = LO(x) and OM(y) > OM(x)).

13 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Setting

Goal

Extend the radius policies for RLS including more information.

State Spaces

S(1) = [0..n], values of LeadingOnes fitness;

S(2) := {(l ,m) : l ∈ [0..n],m ∈ [l ..n]}, tuples of (LeadingOnes,
OneMax) fitness;

S(n) := {0, 1}n, all possible bit-strings.

Lexicographic selection

Candidate y is accepted from x according to the relation
(LO(y),OM(y)) > (LO(x),OM(x)) if and only if (LO(y) > LO(x)) or
(LO(y) = LO(x) and OM(y) > OM(x)).

13 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Setting

Goal

Extend the radius policies for RLS including more information.

State Spaces

S(1) = [0..n], values of LeadingOnes fitness;

S(2) := {(l ,m) : l ∈ [0..n],m ∈ [l ..n]}, tuples of (LeadingOnes,
OneMax) fitness;

S(n) := {0, 1}n, all possible bit-strings.

Lexicographic selection

Candidate y is accepted from x according to the relation
(LO(y),OM(y)) > (LO(x),OM(x)) if and only if (LO(y) > LO(x)) or
(LO(y) = LO(x) and OM(y) > OM(x)).

13 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Policy on S(2)

Expected Runtime from a Starting State

E[T (k)
opt (l ,m)] = 1 + P((l ,m)|(l ,m)) · E[T (k)

opt (l ,m)]+

+
n−1∑
λ=l

(λ,µ)̸=(l ,m)

n−1∑
µ=λ

P((λ, µ)|(l ,m)) · E[Topt(λ, µ)], ∀(l ,m) ∈ S(2)

kopt(n − 1, n − 1) = 1

E[Topt(n − 1, n − 1)] = n + 1

Optimal Policy

kopt(l ,m) = argmin
k∈[n−l]

E[T (k)
opt (l ,m)], ∀(l ,m) ∈ S(2)

14 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Policy on S(2)

Expected Runtime from a Starting State

E[T (k)
opt (l ,m)] = 1 + P((l ,m)|(l ,m)) · E[T (k)

opt (l ,m)]+

+
n−1∑
λ=l

(λ,µ)̸=(l ,m)

n−1∑
µ=λ

P((λ, µ)|(l ,m)) · E[Topt(λ, µ)], ∀(l ,m) ∈ S(2)

kopt(n − 1, n − 1) = 1

E[Topt(n − 1, n − 1)] = n + 1

Optimal Policy

kopt(l ,m) = argmin
k∈[n−l]

E[T (k)
opt (l ,m)], ∀(l ,m) ∈ S(2)

14 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Strict Standard Setting

Approximation: Strict Standard Selection

Candidate y is accepted from x according to the relation LO(y) > LO(x).

Expected Runtime from a Starting State

E[T (k)
opt (l ,m)] =1 + P((l ,m)|(l ,m)) · E[T (k)

opt (l ,m)]+

+
n−1∑
λ=l

(λ,µ) ̸=(l ,m)

n−1∑
µ=λ

P((λ, µ)|(l ,m)) · E[Topt(λ, µ)]

Expected Runtime of the Algorithm

E[Topt] =
n−1∑
l=0

n−1∑
m=l

P(LO(x (0)) = l ,OM(x (0)) = m) · E[Topt(l ,m)]

15 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Strict Standard Setting

Approximation: Strict Standard Selection

Candidate y is accepted from x according to the relation LO(y) > LO(x).

Expected Runtime from a Starting State

E[T (k)
opt (l ,m)] =1 + P((l ,m)|(l ,m)) · E[T (k)

opt (l ,m)]+

+
n−1∑
λ=l

(λ,µ) ̸=(l ,m)

n−1∑
µ=λ

P((λ, µ)|(l ,m)) · E[Topt(λ, µ)]

Expected Runtime of the Algorithm

E[Topt] =
n−1∑
l=0

n−1∑
m=l

P(LO(x (0)) = l ,OM(x (0)) = m) · E[Topt(l ,m)]

15 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Lexicographic Low-dimensional

Figure: Heatmaps of optimal policies for lexicographic selection

16 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Lexicographic Low-dimensional

n S(1) std. S(1) lex. S(2) lex.
7 19.11 14.20 11.55

8 24.96 18.75 14.37

9 31.59 22.03 17.25

10 39.00 27.23 20.29

11 47.19 30.34 23.39

12 56.16 37.16 26.63

13 65.91 40.31 29.91

14 76.44 46.76 33.28

15 87.75 50.94 36.75

16 99.84 61.91 40.24

Table: Expected time for lexicographic selection

17 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Strict Standard Low-dimensional

18 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Strict Standard Low-dimensional

n S(1) std. S(2) s. std. Improvement

7 19.110 14.783 22.61%

8 24.960 19.629 21.41%

9 31.590 25.530 19.20%

10 39.000 31.737 18.61%

11 47.190 38.575 18.24%

12 56.160 46.423 17.31%

13 65.910 55.265 16.15%

14 76.440 64.194 16.00%

15 87.750 74.006 15.66%

16 99.840 84.919 14.96%

Table: Expected time for strict standard selection

19 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Heuristic Policy

20 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Lexicographic High-dimensional

n S(1) Heuristic on S(2)

20 83.052 ± 35.401 56.817 ± 24.935

30 156.440 ± 57.204 97.100 ± 38.187

50 365.279 ± 113.261 189.796 ± 70.485

70 686.021 ± 201.404 322.379 ± 107.782

99 1484.031 ± 357.983 616.595 ± 161.838

Table: Simulated results for lexicographic selection

21 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Standard High-dimensional

n S(1) Heuristic on S(2)

20 159.806 ± 63.532 151.438 ± 61.158

30 344.132 ± 114.888 347.866 ± 102.573

50 970.620 ± 254.967 960.984 ± 234.036

70 1886.518 ± 405.619 1866.500 ± 416.876

Table: Simulated results for standard selection

22 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Future Directions

Future Directions

Study more in depth the standard setting, trying to validate the
results in high dimension.

Use the tested settings and policies to train a RL agent in the
proposed settings, using our policies as new ground truths.

Our research contributes to the growing field of AutoML, where
optimization heuristics for parameter control are explored as a means
to automate the fine-tuning of machine learning algorithms.

23 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Future Directions

Future Directions

Study more in depth the standard setting, trying to validate the
results in high dimension.

Use the tested settings and policies to train a RL agent in the
proposed settings, using our policies as new ground truths.

Our research contributes to the growing field of AutoML, where
optimization heuristics for parameter control are explored as a means
to automate the fine-tuning of machine learning algorithms.

23 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Future Directions

Future Directions

Study more in depth the standard setting, trying to validate the
results in high dimension.

Use the tested settings and policies to train a RL agent in the
proposed settings, using our policies as new ground truths.

Our research contributes to the growing field of AutoML, where
optimization heuristics for parameter control are explored as a means
to automate the fine-tuning of machine learning algorithms.

23 / 24

Black-box Optimization Parameter Control Contributions Computational Results Conclusion

Thank you for your attention!

24 / 24

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Setting

Standard Selection

Candidate y is accepted from x according to the relation LO(y) ≥ LO(x).

We obtain a linear system in matrix form Ax = b as follows.

x =


E[T (kl)

opt (l , l)]

E[T (kl+1)
opt (l , l + 1)]

...

E[T (kn−1)
opt (l , n − 1)]

 b =


1 +

∑n−1
λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l))E[Topt(λ, µ)]

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l + 1))E[Topt(λ, µ)]

...

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , n − 1))E[Topt(λ, µ)]



A =


(1− P(kl)((l , l) | (l , l))) P(kl+1)((l , l + 1) | (l , l)) · · · P(kn−1)((l , n − 1) | (l , l))
P(kl)((l , l) | (l , l + 1)) (1− P(kl+1)((l , l + 1) | (l , l + 1))) · · · P(kn−1)((l , n − 1) | (l , l + 1))

...
...

. . .
...

P(kl)((l , l) | (l , n − 1)) P(kl+1)((l , l + 1) | (l , n − 1)) · · · (1− P(kn−1)((l , n − 1) | (l , n − 1)))


1 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Setting

We obtain linear system in matrix form Ax = b as follows.

x =


E[T (kl)

opt (l , l)]

E[T (kl+1)
opt (l , l + 1)]

...

E[T (kn−1)
opt (l , n − 1)]

 b =


1 +

∑n−1
λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l))E[Topt(λ, µ)]

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l + 1))E[Topt(λ, µ)]

...

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , n − 1))E[Topt(λ, µ)]



A =


(1− P(kl)((l , l) | (l , l))) P(kl+1)((l , l + 1) | (l , l)) · · · P(kn−1)((l , n − 1) | (l , l))
P(kl)((l , l) | (l , l + 1)) (1− P(kl+1)((l , l + 1) | (l , l + 1))) · · · P(kn−1)((l , n − 1) | (l , l + 1))

...
...

. . .
...

P(kl)((l , l) | (l , n − 1)) P(kl+1)((l , l + 1) | (l , n − 1)) · · · (1− P(kn−1)((l , n − 1) | (l , n − 1)))



Approximation

We take kl = kl+1 = · · · = kn−1 = k to compute E[T (k)
opt (l ,m)];

We then take kopt(l ,m) = argmink∈[n−l] E[T
(k)
opt (l ,m)].

2 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Low-dimensional

Figure: Heatmaps of approximated optimal policies for standard selection

3 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Low-dimensional

Dim (n) S(1) std S(2) std
2 1.5 1.125

3 3.5 2.375

4 6.0 4.448

5 9.667 7.463

6 13.667 11.488

7 18.875 16.435

Table: Expected time for standard selection

4 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Graph n = 4

(0,0)
[4], 1

(0,1)
[3], 4

(0,2)
[2], 5.111

(0,3)
[1], 4

(1,1)
[3], 4

(1,2)
[2], 5

(1,3)
[1], 4

(2,2)
[2], 4

(2,3)
[1], 4

(3,3)
[1], 4

(4,4)
[/], 0

1

1/4

3/4

1/2

1/4

1/4

3/4

1/4

3/4

1/42/3

1/6

1/6

3/4

1/43/4

1/4

3/4

1/4

3/4

1/4

5 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Boxplot lexicographic

6 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Limited Portfolio

powers of two: {2i | 2i ≤ n};
initial segment with 3 elements: [1..3];
evenly spread with 3 elements: {i · ⌊n/3⌋+ 1 | i ∈ [0..2]}.

n S(1) S(2) powers of two initial segment evenly spread

2 1.5 1.25 1.25 1.25 1.75

3 3.125 2.375 2.75 2.375 2.375

4 5.5 4.375 4.625 4.687 4.687

5 7.857 6.491 6.87 7.087 7.087

6 11.511 8.946 9.537 9.684 9.261

7 14.197 11.549 12.205 12.471 12.037

8 18.748 14.368 14.574 15.306 14.906

9 22.031 17.248 17.589 18.318 17.693

10 27.234 20.289 20.683 21.413 20.81

11 30.337 23.393 23.908 24.6 24.028

12 37.156 26.63 27.203 27.903 27.1

13 40.306 29.914 30.58 31.247 30.482

14 46.758 33.282 34.024 34.694 33.938

15 50.941 36.747 37.53 38.214 37.329

16 58.558 40.237 40.469 41.772 40.9

Table: Expected time for lexicographic selection with different portfolios
7 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Limited portfolio

Figure: Heatmaps of optimal policy for lexicographic selection and limited
portfolio

8 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Results for S(n)

n S(2) S(n)

7 11.549 11.549

8 14.368 14.365

9 17.248 17.248

10 20.289 20.287

11 23.393 23.393

12 26.63 26.629

13 29.914 29.914

14 33.282 33.279

15 36.747 36.743

16 40.237 40.236

Table: Expected time for lexicographic selection

9 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Results for S(n)

10 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Runs

0 25 50 75 100 125
OneMax

0

20

40

60

80

100

120

Le
ad

in
gO

ne
s

20

40

60

80

100

120

0 50 100
OneMax

0

25

50

75

100

125

Le
ad

in
gO

ne
s

25

50

75

100

125

11 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Dynamic Algorithm Configuration

Definition (DAC Problem)

Given ⟨A,Θ,D,Π, c⟩:
A step-wise reconfigurable target algorithm A with configuration
space Θ.

A distribution D over target problem instances with domain I .

A space of dynamic configuration policies π ∈ Π with π : S × I → Θ
that choose a configuration θ ∈ Θ for each instance i ∈ I and state
s ∈ S of A.

A cost metric c : Π× I → R assessing the cost of using π ∈ Π on
i ∈ I .

Find a π∗ ∈ argminπ∈Π Ei∼D [c(π, i)].

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case.

12 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Dynamic Algorithm Configuration

Definition (DAC Problem)

Given ⟨A,Θ,D,Π, c⟩:
A step-wise reconfigurable target algorithm A with configuration
space Θ.

A distribution D over target problem instances with domain I .

A space of dynamic configuration policies π ∈ Π with π : S × I → Θ
that choose a configuration θ ∈ Θ for each instance i ∈ I and state
s ∈ S of A.

A cost metric c : Π× I → R assessing the cost of using π ∈ Π on
i ∈ I .

Find a π∗ ∈ argminπ∈Π Ei∼D [c(π, i)].

We take as cost the runtime, defined by the number of evaluations of the
objective before evaluating the optimum, which we assume is reachable in
our case. 12 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

DAC on LeadingOnes

Definition

Q-learning consists in learning the Q-function Q : S ×A −→ R, which
maps a state-action pair to the cumulative function reward that is received
after playing an action a in state s.

Definition

To model the Q-function it is possible to use two copies of a neural
network, one used to select maximizing actions and the other to predict
the value, in order to improve stability. The result is the so-called double
deep Q network.

13 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

DAC on LeadingOnes

Definition

Q-learning consists in learning the Q-function Q : S ×A −→ R, which
maps a state-action pair to the cumulative function reward that is received
after playing an action a in state s.

Definition

To model the Q-function it is possible to use two copies of a neural
network, one used to select maximizing actions and the other to predict
the value, in order to improve stability. The result is the so-called double
deep Q network.

13 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

DAC on LeadingOnes

Remark

Given a state st and an action at , the Q-value Q(st , at) can be updated
using temporal differences (TD) as

Q(st , at)← Q(st , at) + α((rt + γmaxQ(st+1, ·))−Q(st , at))

where α is the learning rate and γ is the discount factor.
The reward is rt = LO(xt)− LO(xt−1)− 1

The reward-maximizing policy can then be defined as

π(s) = argmax
a∈A

Q(s, ·)

Typically, for better exploration, ε-greedy approach is used, where ε gives
the probability that an action at is replaced with a randomly sampled one.

14 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

DAC on LeadingOnes

Remark

Given a state st and an action at , the Q-value Q(st , at) can be updated
using temporal differences (TD) as

Q(st , at)← Q(st , at) + α((rt + γmaxQ(st+1, ·))−Q(st , at))

where α is the learning rate and γ is the discount factor.
The reward is rt = LO(xt)− LO(xt−1)− 1

The reward-maximizing policy can then be defined as

π(s) = argmax
a∈A

Q(s, ·)

Typically, for better exploration, ε-greedy approach is used, where ε gives
the probability that an action at is replaced with a randomly sampled one.

14 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

DDQN DAC agent on LeadingOnes

Figure: Hitting ratio and number of hitting points for the DDQN agent in various
dimensions

15 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Parameter Control: Exact Runtime for (1+1) Algorithms

General Analysis: Applicable to all (1+1) algorithms on LeadingOnes, RLS in
particular.

Theorem (Exact Runtime for LeadingOnes)

Let T be the time until the optimum is found. Then:

T ∼
n−1∑
i=0

Xi · Geom(qi)

where:

X0, . . . ,Xn−1 are i.i.d. binary random variables.

qi : Probability that mutation improves fitness i .

Expected Time: E[T] =
1

2

n−1∑
i=0

1

qi
, with

1

qi
=∞ if qi = 0.

16 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Parameter Control: Proof Sketch (Part 1)

Setup:

Assume uniform distribution of ones in the tail:

xj ∼ Uniform{0, 1}, ∀j ∈ [i + 2..n]

Define runtimes:

T 0
i : Runtime starting with fitness exactly i .

T rand
i : Runtime starting with fitness at least i (with xi+1 random).

Note: T 0
n = T rand

n .

Key Observation:
T 0
i = Geom(qi) + T rand

i+1 , ∀i < n

Waiting time to flip bit i + 1 follows Geom(qi).

17 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Parameter Control: Proof Sketch (Part 2)

Recursive Relation:

T rand
i = XiT

0
i + (1− Xi)T

rand
i+1

= Xi (Geom(qi) + T rand
i+1) + (1− Xi)T

rand
i+1

= XiGeom(qi) + T rand
i+1

where:

Xi is a uniform binary random variable, independent from other randomness.

By Induction:

Starting from T rand
n and iterating backwards.

Since T = T rand
0 , the theorem holds.

Conclusion:

The runtime is a sum of independent geometric distributions, scaled by
random binary variables.

Provides a clean, exact expression for E[T].

18 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Setting

Standard Selection

Candidate y is accepted from x according to the relation LO(y) ≥ LO(x).

We obtain a linear system in matrix form Ax = b as follows.

x =


E[T (kl)

opt (l , l)]

E[T (kl+1)
opt (l , l + 1)]

...

E[T (kn−1)
opt (l , n − 1)]

 b =


1 +

∑n−1
λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l))E[Topt(λ, µ)]

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l + 1))E[Topt(λ, µ)]

...

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , n − 1))E[Topt(λ, µ)]



A =


(1− P(kl)((l , l) | (l , l))) P(kl+1)((l , l + 1) | (l , l)) · · · P(kn−1)((l , n − 1) | (l , l))
P(kl)((l , l) | (l , l + 1)) (1− P(kl+1)((l , l + 1) | (l , l + 1))) · · · P(kn−1)((l , n − 1) | (l , l + 1))

...
...

. . .
...

P(kl)((l , l) | (l , n − 1)) P(kl+1)((l , l + 1) | (l , n − 1)) · · · (1− P(kn−1)((l , n − 1) | (l , n − 1)))


19 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Standard Setting

We obtain linear system in matrix form Ax = b as follows.

x =


E[T (kl)

opt (l , l)]

E[T (kl+1)
opt (l , l + 1)]

...

E[T (kn−1)
opt (l , n − 1)]

 b =


1 +

∑n−1
λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l))E[Topt(λ, µ)]

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , l + 1))E[Topt(λ, µ)]

...

1 +
∑n−1

λ=l+1

∑n−1
µ=λ P((λ, µ)|(l , n − 1))E[Topt(λ, µ)]



A =


(1− P(kl)((l , l) | (l , l))) P(kl+1)((l , l + 1) | (l , l)) · · · P(kn−1)((l , n − 1) | (l , l))
P(kl)((l , l) | (l , l + 1)) (1− P(kl+1)((l , l + 1) | (l , l + 1))) · · · P(kn−1)((l , n − 1) | (l , l + 1))

...
...

. . .
...

P(kl)((l , l) | (l , n − 1)) P(kl+1)((l , l + 1) | (l , n − 1)) · · · (1− P(kn−1)((l , n − 1) | (l , n − 1)))



Approximation

We take kl = kl+1 = · · · = kn−1 = k to compute E[T (k)
opt (l ,m)];

We then take kopt(l ,m) = argmink∈[n−l] ·E[T
(k)
opt (l ,m)].

20 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Probabilistic Method: Algorithm

Algorithm Steps:

1 Choose k from distribution (p0, p1, . . . , pn), where Pr[k = i] = pi .

2 Flip k bits chosen uniformly at random.

Fitness Level n − 1:

Only one valid string: 1n−10.

To improve, flip exactly one bit ⇒ p1 = 1.

Success probability: 1
n ⇒ E[T] = n.

Fitness Level n − 2:

Two states: S1 = 1n−201 and S2 = 1n−200.

Use p1 + p2 = 1 in both states.

21 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Probabilistic Method: Expected Time Analysis

Define:

E [T1] and E [T2]: Expected times from states S1 and S2.

System of Equations:
E [T1] = 1 +

p
(1)
1

n E [T2] +
2p

(1)
2

n−1 +

(
1− 2p

(1)
1

n

)
E [T1]

E [T2] = 1 + p
(2)
1 +

p
(2)
1

n E [T1] +

(
1− 2p

(2)
1

n

)
E [T2]

Simplified: (2− o(1))E [T1]− E [T2] = (1 + o(1)) n

p
(1)
1

−E [T1] + (2− o(1))E [T2] = (1 + p
(2)
1) n

p
(2)
1

22 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Probabilistic Method: Optimization and Conclusion

Optimization:

Multiply and add the equations for E [T1] and E [T2] to solve.

Result:
(3− o(1))E [T1] = (2± o(1)) n

p
(1)
1

+ n

p
(2)
1

+ n

(3− o(1))E [T2] = (1 + o(1)) n

p
(1)
1

+ (2− o(1))

(
n

p
(2)
1

+ n

)
Conclusion:

Asymptotic minimization occurs when p
(1)
1 = p

(2)
1 = 1.

Optimal Strategy: Always flip one bit in both states.

23 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Black-box complexity

OneMax unary unbiased complexity
The lower bound Ω(n log n) is consequence of the Theorem

Theorem (Theorem 6 in Lehre, Witt, 2010)

Let f : {0, 1}n → R be a function that has a single global optimum (i.e.,
in the case of maximization, the size of the set argmax f is one). The
unary unbiased black-box complexity of f is Ω(n log n).

The theorem is proved by multiplicative drift analysis, with potential
defined as the smallest Hamming distance among the previously queried of
any of the previously queried search points to the unique global optimum
or its bit-wise complement.

24 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Multiplicative Drift Analysis

Theorem (Multiplicative Drift Theorem)

Let (Xt)t≥0 be a sequence of non-negative random variables with a finite
state space S ⊆ R≥0 such that 0 ∈ S. Let smin := min(S \ {0}), let
T := inf{t ≥ 0 | Xt = 0}, and for t ≥ 0 and s ∈ S, let
∆t(s) := E[Xt − Xt+1 | Xt = s]. Suppose that there exists δ > 0 such
that for all s ∈ S \ {0} and all t ≥ 0, the drift is

∆t(s) ≥ δs.

Then

E[T] ≤ 1 +
E[log(X0/smin)]

δ
.

25 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Black-box complexity

LeadingOnes unary unbiased complexity
The result is proved via additive drift analysis with the potential function
defined as a function that maps the state of the search process at time t
(i.e., the sequence {x(1), f (x(1)), . . . , x(t), f (x(t))} of the pairs of search
points evaluated so far and their respective function values) to the largest
number of initial ones and initial zeros in any of the t + 1 strings
x(1), . . . , x(n).

26 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Additive drift

Theorem (Additive Drift Theorem)

Let (Xt)t=0,1,2,... be a sequence of non-negative random variables with a finite
state space S ⊆ R≥0 such that 0 ∈ S. Let T := inf{t ≥ 0|Xt = 0}.

If there exists δ > 0 such that for all s ∈ S \ {0} and for all t ≥ 0,

∆t(s) := E[Xt − Xt+1|Xt = s] ≥ δ,

then

E[T] ≤ E[X0]

δ
.

If there exists δ > 0 such that for all s ∈ S \ {0} and for all t ≥ 0,

∆t(s) := E[Xt − Xt+1|Xt = s] ≤ δ,

then

E[T] ≥ E[X0]

δ
.

27 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Black-box complexity

Definition

For all n ∈ N and all z ∈ {0, 1}n, let

OMz : {0, 1}n → [n], x 7→ OMz(x) = |{i ∈ [n] | xi = zi}|,

be the function that assigns to each length-n bit string x the number of
bits in which x and z agree. Being the unique optimum of OMz , the
string z is called its target string.
We refer to OneMaxn, or simply OneMax := {OMz | z ∈ {0, 1}n} as
the set of all (generalized) OneMax functions.

The unrestricted black-box complexity for OneMaxn is Θ(n/ log n).

28 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

Black-box complexity

Definition

For all n ∈ N and z ∈ {0, 1}n, let

LOz : {0, 1}n → [n], x 7→ max{i ∈ [0..n] | ∀j ∈ [i] : xj = zj},

be the length of the maximal joint prefix of x and z . Let
LeadingOnes∗n := {LOz | z ∈ {0, 1}n}.
For z ∈ {0, 1}n and σ ∈ Sn permutation of n elements, let

LOz,σ : {0, 1}n → [n], x 7→ max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)},

be the maximal joint prefix of x and z with respect to σ. The set
LeadingOnesn is the collection of all such functions; i.e.,

LeadingOnesn := {LOz,σ | z ∈ {0, 1}n, σ ∈ Sn}.

The unrestricted black-box complexity for LeadingOnesn is
Θ(n log log n).

29 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

CMA-ES (Part 1)

General Structure of CMA-ES

Set parameters λ, wi for i = 1, . . . , µ, cσ, dσ, cc , c1, and cµ.

Initialize:

Evolution paths: pσ = 0, pc = 0
Covariance matrix: C = I
Generation counter: g = 0

Choose initial distribution mean m ∈ Rn and step-size σ ∈ R>0.

While termination criterion not met:

1 g ← g + 1 (Increment generation counter)

2 Sample new population:

For k = 1, . . . , λ:
zk ∼ N (0, I)
yk = BDzk ∼ N (0,C)
xk = m + σyk ∼ N (m, σ2C)

30 / 31

Further Results Related Work Other Methods Black-box Complexity Appendix

CMA-ES (Part 2)

3 Selection and Recombination:

ŷw =
∑µ

i=1 wiyi , where
∑

wi = 1 and wi > 0
m← m + cmσŷw (Update mean)

4 Step-size Control:

pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeffC
−1/2ŷw

σ ← σ · exp
(

cσ
dσ

(
∥pσ∥

E∥N (0,I)∥ − 1
))

5 Covariance Matrix Adaptation:

pc ← (1− cc)pc +
√
cc(2− cc)µeffŷw

w rank
i ← wi ·

(
1 if wi ≥ 0 else n

∥C−1/2yi∥2

)
C ← (1 + c1hσ − c1 − cµ

∑
w rank
i)C + c1pcp

T
c + cµ

∑λ
i=1 w

rank
i yiy

T
i

Return: m and σ as final solution.

31 / 31

	Black-box Optimization
	Parameter Control
	Contributions
	Computational Results
	Conclusion
	Appendix
	Further Results
	Related Work
	Other Methods
	Black-box Complexity
	Appendix

